Strela V, Heller P N, Strang G, Topiwala P, Heil C
Dept. of Math., Dartmouth Coll., Hanover, NH 03755, USA.
IEEE Trans Image Process. 1999;8(4):548-63. doi: 10.1109/83.753742.
Multiwavelets are a new addition to the body of wavelet theory. Realizable as matrix-valued filterbanks leading to wavelet bases, multiwavelets offer simultaneous orthogonality, symmetry, and short support, which is not possible with scalar two-channel wavelet systems. After reviewing this theory, we examine the use of multiwavelets in a filterbank setting for discrete-time signal and image processing. Multiwavelets differ from scalar wavelet systems in requiring two or more input streams to the multiwavelet filterbank. We describe two methods (repeated row and approximation/deapproximation) for obtaining such a vector input stream from a one-dimensional (1-D) signal. Algorithms for symmetric extension of signals at boundaries are then developed, and naturally integrated with approximation-based preprocessing. We describe an additional algorithm for multiwavelet processing of two-dimensional (2-D) signals, two rows at a time, and develop a new family of multiwavelets (the constrained pairs) that is well-suited to this approach. This suite of novel techniques is then applied to two basic signal processing problems, denoising via wavelet-shrinkage, and data compression. After developing the approach via model problems in one dimension, we apply multiwavelet processing to images, frequently obtaining performance superior to the comparable scalar wavelet transform.
多小波是小波理论体系中的新成员。多小波可实现为通向小波基的矩阵值滤波器组,它同时具备正交性、对称性和短支撑性,而这对于标量双通道小波系统来说是不可能实现的。在回顾了这一理论之后,我们研究了多小波在离散时间信号和图像处理的滤波器组设置中的应用。多小波与标量小波系统的不同之处在于,多小波滤波器组需要两个或更多的输入流。我们描述了两种从一维(1-D)信号中获取这种向量输入流的方法(重复行法和近似/去近似法)。接着开发了信号在边界处的对称扩展算法,并将其与基于近似的预处理自然地集成在一起。我们描述了一种二维(2-D)信号的多小波处理算法,每次处理两行,并开发了一个非常适合这种方法的新的多小波族(约束对)。然后将这套新颖的技术应用于两个基本的信号处理问题,即通过小波收缩去噪和数据压缩。在通过一维模型问题开发出该方法后,我们将多小波处理应用于图像,经常获得优于可比标量小波变换的性能。