Suppr超能文献

为功能性脑网络构建选择小波方法、滤波器和长度

Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction.

作者信息

Zhang Zitong, Telesford Qawi K, Giusti Chad, Lim Kelvin O, Bassett Danielle S

机构信息

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America.

出版信息

PLoS One. 2016 Jun 29;11(6):e0157243. doi: 10.1371/journal.pone.0157243. eCollection 2016.

Abstract

Wavelet methods are widely used to decompose fMRI, EEG, or MEG signals into time series representing neurophysiological activity in fixed frequency bands. Using these time series, one can estimate frequency-band specific functional connectivity between sensors or regions of interest, and thereby construct functional brain networks that can be examined from a graph theoretic perspective. Despite their common use, however, practical guidelines for the choice of wavelet method, filter, and length have remained largely undelineated. Here, we explicitly explore the effects of wavelet method (MODWT vs. DWT), wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families), and wavelet length (2 to 24)-each essential parameters in wavelet-based methods-on the estimated values of graph metrics and in their sensitivity to alterations in psychiatric disease. We observe that the MODWT method produces less variable estimates than the DWT method. We also observe that the length of the wavelet filter chosen has a greater impact on the estimated values of graph metrics than the type of wavelet chosen. Furthermore, wavelet length impacts the sensitivity of the method to detect differences between health and disease and tunes classification accuracy. Collectively, our results suggest that the choice of wavelet method and length significantly alters the reliability and sensitivity of these methods in estimating values of metrics drawn from graph theory. They furthermore demonstrate the importance of reporting the choices utilized in neuroimaging studies and support the utility of exploring wavelet parameters to maximize classification accuracy in the development of biomarkers of psychiatric disease and neurological disorders.

摘要

小波方法被广泛用于将功能磁共振成像(fMRI)、脑电图(EEG)或脑磁图(MEG)信号分解为代表固定频段神经生理活动的时间序列。利用这些时间序列,可以估计传感器或感兴趣区域之间特定频段的功能连接性,从而构建能够从图论角度进行研究的功能性脑网络。然而,尽管它们被普遍使用,但在小波方法、滤波器和长度的选择方面,实用指南在很大程度上仍未明确。在这里,我们明确探讨了小波方法(平移不变小波变换(MODWT)与离散小波变换(DWT))、小波滤波器(Daubechies极值相位、Daubechies最小不对称和Coiflet族)以及小波长度(2至24)——基于小波方法中的每个关键参数——对图指标估计值及其对精神疾病变化的敏感性的影响。我们观察到,与DWT方法相比,MODWT方法产生的估计值变化较小。我们还观察到,所选小波滤波器的长度对图指标估计值的影响比所选小波的类型更大。此外,小波长度会影响该方法检测健康与疾病差异的敏感性,并调整分类准确率。总体而言,我们的结果表明,小波方法和长度的选择会显著改变这些方法在估计从图论得出的指标值时的可靠性和敏感性。它们还证明了报告神经影像学研究中所采用选择的重要性,并支持在精神疾病和神经疾病生物标志物开发中探索小波参数以最大化分类准确率的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验