Suppr超能文献

快速、安全且逐步学习导航策略。

Rapid, safe, and incremental learning of navigation strategies.

作者信息

Millan J R

机构信息

Joint Res. Centre, Commission of the Eur. Communities, Ispra.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1996;26(3):408-20. doi: 10.1109/3477.499792.

Abstract

In this paper we propose a reinforcement connectionist learning architecture that allows an autonomous robot to acquire efficient navigation strategies in a few trials. Besides rapid learning, the architecture has three further appealing features. First, the robot improves its performance incrementally as it interacts with an initially unknown environment, and it ends up learning to avoid collisions even in those situations in which its sensors cannot detect the obstacles. This is a definite advantage over nonlearning reactive robots. Second, since it learns from basic reflexes, the robot is operational from the very beginning and the learning process is safe. Third, the robot exhibits high tolerance to noisy sensory data and good generalization abilities. All these features make this learning robot's architecture very well suited to real-world applications. We report experimental results obtained with a real mobile robot in an indoor environment that demonstrate the appropriateness of our approach to real autonomous robot control.

摘要

在本文中,我们提出了一种强化连接主义学习架构,该架构允许自主机器人在几次试验中获取高效的导航策略。除了快速学习之外,该架构还有另外三个吸引人的特点。首先,机器人在与最初未知的环境交互时逐步提高其性能,并且最终学会即使在其传感器无法检测到障碍物的情况下也能避免碰撞。这相对于非学习型反应式机器人来说是一个明显的优势。其次,由于它从基本反射开始学习,机器人从一开始就可以运行,并且学习过程是安全的。第三,机器人对嘈杂的感官数据具有很高的容忍度和良好的泛化能力。所有这些特点使得这种学习机器人架构非常适合实际应用。我们报告了在室内环境中使用真实移动机器人获得的实验结果,这些结果证明了我们的方法对于实际自主机器人控制的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验