Suppr超能文献

SLAM 算法在机器人辅助未知环境导航中的应用。

SLAM algorithm applied to robotics assistance for navigation in unknown environments.

机构信息

Institute of Automatics, National University of San Juan, Argentina.

出版信息

J Neuroeng Rehabil. 2010 Feb 17;7:10. doi: 10.1186/1743-0003-7-10.

Abstract

BACKGROUND

The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI).

METHODS

In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents.

RESULTS

The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface.

CONCLUSIONS

The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.

摘要

背景

机器人工具与辅助技术的结合决定了在残疾或老年人的日常任务中,应用和优势的一个略有探索的领域。自主电动轮椅在环境中的导航、基于行为的矫形臂控制或友好界面的用户偏好学习,都是这一新领域的一些例子。在本文中,实现了一种同时定位和映射 (SLAM) 算法,允许移动机器人在其导航由肌电信号控制的同时进行环境学习。整个系统部分自主,部分依赖于用户决策(半自主)。SLAM 算法执行的环境学习和移动机器人的低级基于行为的反应是机器人自主任务,而移动机器人在环境中的导航则由肌计算机接口 (MCI) 命令。

方法

在本文中,实现了一种基于特征的顺序扩展卡尔曼滤波器 (EKF) SLAM 算法。特征对应于环境中的线和角——凹角和凸角。从 SLAM 架构中,得出了环境的全局度量图。命令机器人运动的肌电信号可以适应患者的残疾情况。为了移动机器人的导航目的,从 MCI 获得了五个命令:向左转、向右转、停止、启动和退出。实现了用于控制移动机器人的运动学控制器。还实现了一种低级行为策略,以避免机器人与环境和移动代理发生碰撞。

结果

整个系统在七名志愿者中进行了测试:三名老年人、两名肘下截肢者和两名年轻的正常肢体患者。实验在一个封闭的低动态环境中进行。受试者平均需要 35 分钟才能在环境中导航并学习如何使用 MCI。SLAM 的结果显示了环境的一致重建。获得的地图存储在肌计算机接口内。

结论

高度要求的处理算法 (SLAM) 与 MCI 的集成以及两者在实时通信中的集成已被证明是一致和成功的。移动机器人生成的度量地图将允许在没有用户直接控制的情况下进行可能的未来自主导航,用户的功能可以被降级为选择机器人目的地。此外,移动机器人共享电动轮椅的相同运动学模型。这一优势可用于轮椅自主导航。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5004/2842281/088e33c7cd9c/1743-0003-7-10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验