Behera L, Gopal M, Chaudhury S
Dept. of Electr. Eng., Indian Inst. of Technol., New Delhi.
IEEE Trans Neural Netw. 1996;7(6):1401-14. doi: 10.1109/72.548168.
This paper is concerned with the design of a neuro-adaptive trajectory tracking controller. The paper presents a new control scheme based on inversion of a feedforward neural model of a robot arm. The proposed control scheme requires two modules. The first module consists of an appropriate feedforward neural model of forward dynamics of the robot arm that continuously accounts for the changes in the robot dynamics. The second module implements an efficient network inversion algorithm that computes the control action by inverting the neural model. In this paper, a new extended Kalman filter (EKF) based network inversion scheme is proposed. The scheme is evaluated through comparison with two other schemes of network inversion: gradient search in input space and Lyapunov function approach. Using these three inversion schemes the proposed controller was implemented for trajectory tracking control of a two-link manipulator. Simulation results in all cases confirm the efficacy of control input prediction using network inversion. Comparison of the inversion algorithms in terms of tracking accuracy showed the superior performance of the EKF based inversion scheme over others.
本文关注神经自适应轨迹跟踪控制器的设计。本文提出了一种基于机器人手臂前馈神经模型逆的新控制方案。所提出的控制方案需要两个模块。第一个模块由机器人手臂正向动力学的适当前馈神经模型组成,该模型持续考虑机器人动力学的变化。第二个模块实现一种高效的网络逆算法,通过对神经模型求逆来计算控制动作。本文提出了一种基于扩展卡尔曼滤波器(EKF)的新网络逆方案。通过与另外两种网络逆方案:输入空间梯度搜索和李雅普诺夫函数方法进行比较,对该方案进行了评估。使用这三种逆方案,所提出的控制器被用于两连杆机械手的轨迹跟踪控制。所有情况下的仿真结果都证实了使用网络逆进行控制输入预测的有效性。在跟踪精度方面对逆算法的比较表明,基于EKF的逆方案比其他方案具有更优的性能。