Soriano Luis Arturo, Zamora Erik, Vazquez-Nicolas J M, Hernández Gerardo, Barraza Madrigal José Antonio, Balderas David
Departamento de Ingeniería Mecánica Agrícola, Universidad Autónoma Chapingo, Texcoco, Mexico.
Laboratorio de Robótica y Mecatrónica, Instituto Politécnico Nacional, CIC, Ciudad de México, Mexico.
Front Neurorobot. 2020 Dec 3;14:577749. doi: 10.3389/fnbot.2020.577749. eCollection 2020.
A Proportional Integral Derivative (PID) controller is commonly used to carry out tasks like position tracking in the industrial robot manipulator controller; however, over time, the PID integral gain generates degradation within the controller, which then produces reduced stability and bandwidth. A proportional derivative (PD) controller has been proposed to deal with the increase in integral gain but is limited if gravity is not compensated for. In practice, the dynamic system non-linearities frequently are unknown or hard to obtain. Adaptive controllers are online schemes that are used to deal with systems that present non-linear and uncertainties dynamics. Adaptive controller use measured data of system trajectory in order to learn and compensate the uncertainties and external disturbances. However, these techniques can adopt more efficient learning methods in order to improve their performance. In this work, a nominal control law is used to achieve a sub-optimal performance, and a scheme based on a cascade neural network is implemented to act as a non-linear compensation whose task is to improve upon the performance of the nominal controller. The main contributions of this work are neural compensation based on a cascade neural networks and the function to update the weights of neural network used. The algorithm is implemented using radial basis function neural networks and a recompense function that leads longer traces for an identification problem. A two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme and compare it with conventional PD control compensation.
比例积分微分(PID)控制器通常用于执行工业机器人操纵器控制器中的位置跟踪等任务;然而,随着时间的推移,PID积分增益会在控制器内部产生退化,进而导致稳定性和带宽降低。已提出比例微分(PD)控制器来应对积分增益的增加,但如果不补偿重力,其作用会受到限制。在实际中,动态系统的非线性通常是未知的或难以获取的。自适应控制器是用于处理具有非线性和不确定性动态的系统的在线方案。自适应控制器利用系统轨迹的测量数据来学习并补偿不确定性和外部干扰。然而,这些技术可以采用更有效的学习方法来提高其性能。在这项工作中,使用标称控制律来实现次优性能,并实施基于级联神经网络的方案作为非线性补偿,其任务是改善标称控制器的性能。这项工作的主要贡献在于基于级联神经网络的神经补偿以及用于更新所使用神经网络权重的函数。该算法使用径向基函数神经网络和一种为识别问题生成更长轨迹的补偿函数来实现。提出了一种二自由度机器人操纵器来验证所提出的方案,并将其与传统的PD控制补偿进行比较。