Lee Min Woo, Jelenska Joanna, Greenberg Jean T
Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA.
Plant J. 2008 May;54(3):452-65. doi: 10.1111/j.1365-313X.2008.03439.x. Epub 2008 Feb 7.
Plant infection responses result from the interaction of pathogen-derived molecules with host components. For the bacterial pathogen Pseudomonas syringae, these molecules are often effector proteins (Hops) that are injected into plant cells. P. syringae carrying hopW1-1 have restricted host range on some Arabidopsis thaliana accessions. At least two Arabidopsis genomic regions are important for the natural variation that conditions resistance to P. syringae/hopW1-1. HopW1-1 elicits a resistance response, and consequently the accumulation of the signal molecule salicylic acid (SA) and transcripts of HWI1 (HopW1-1-Induced Gene1). This work identified three HopW1-1-interacting (WIN) plant proteins: a putative acetylornithine transaminase (WIN1), a protein phosphatase (WIN2) and a firefly luciferase superfamily protein (WIN3). Importantly, WIN2 and WIN3 are partially required for HopW1-1-induced disease resistance, SA production and HWI1 expression. The requirement for WIN2 is specific for HopW1-1-induced resistance, whereas WIN3 is important for responses to several effectors. Overexpression of WIN2 or WIN3 confers resistance to virulent P. syringae, which is consistent with these proteins being defense components. Several known genes important for SA production or signaling are also partially (EDS1, NIM1/NPR1, ACD6 and ALD1) or strongly (PAD4) required for the robust resistance induced by HopW1-1, suggesting a key role for SA in the HopW1-1-induced resistance response. Finally, WIN1 is an essential protein, the overexpression of which over-rides the resistance response to HopW1-1 (and several other defense-inducing effectors), and delays SA and HWI1 induction. Thus, the WIN proteins have different roles in modulating plant defense.
植物感染反应是病原体衍生分子与宿主成分相互作用的结果。对于细菌病原体丁香假单胞菌来说,这些分子通常是注入植物细胞的效应蛋白(Hops)。携带hopW1-1的丁香假单胞菌在一些拟南芥种质上的宿主范围有限。至少两个拟南芥基因组区域对于决定对丁香假单胞菌/hopW1-1抗性的自然变异很重要。HopW1-1引发抗性反应,进而导致信号分子水杨酸(SA)和HWI1(HopW1-1诱导基因1)转录本的积累。这项研究鉴定出了三种与HopW1-1相互作用(WIN)的植物蛋白:一种假定的乙酰鸟氨酸转氨酶(WIN1)、一种蛋白磷酸酶(WIN2)和一种萤火虫荧光素酶超家族蛋白(WIN3)。重要的是,WIN2和WIN3对于HopW1-1诱导的抗病性、SA产生和HWI1表达部分必需。对WIN2的需求对HopW1-1诱导的抗性具有特异性,而WIN3对于对几种效应子的反应很重要。WIN2或WIN3的过表达赋予对毒性丁香假单胞菌的抗性,这与这些蛋白作为防御成分一致。几个对SA产生或信号传导重要的已知基因对于HopW1-1诱导的强大抗性也部分(EDS1、NIM1/NPR1、ACD6和ALD1)或强烈(PAD4)必需,这表明SA在HopW1-1诱导的抗性反应中起关键作用。最后,WIN1是一种必需蛋白,其过表达会消除对HopW1-1(以及其他几种诱导防御的效应子)的抗性反应,并延迟SA和HWI1的诱导。因此,WIN蛋白在调节植物防御中具有不同作用。