Suppr超能文献

γ-分泌酶:血管生成的多面调节因子。

gamma-Secretase: a multifaceted regulator of angiogenesis.

作者信息

Boulton Michael E, Cai Jun, Grant Maria B

机构信息

Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.

出版信息

J Cell Mol Med. 2008 Jun;12(3):781-95. doi: 10.1111/j.1582-4934.2008.00274.x. Epub 2008 Feb 8.

Abstract

Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified gamma-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-? which is able to regulate the angiogenic process. The gamma-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. gamma-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of gamma-secretase. This seeming complexity allows numerous possibilities for the development of targeted gamma-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of gamma-secretase, the growing evidence for its role in angiogenesis and the substrates involved, gamma-secretase as a therapeutic target and future challenges in this area.

摘要

生理性血管生成对于发育、体内平衡和组织修复至关重要,但病理性新生血管形成是肿瘤、类风湿性关节炎和眼部并发症的主要特征。过去十年的研究已确定γ-分泌酶,一种早老素依赖性蛋白酶,是血管生成的关键调节因子,其作用方式如下:(i) 通过对受体(如血管内皮生长因子受体-1、Notch、表皮生长因子受体-4、胰岛素样生长因子-I受体)进行调节性膜内蛋白水解和跨膜切割,随后细胞内结构域转位至细胞核;(ii) 全长膜结合受体(血管内皮生长因子受体-1)转位至细胞核;(iii) 膜结合蛋白(血管内皮生长因子受体-1和表皮生长因子受体-4)磷酸化;(iv) 调节黏附连接(钙黏蛋白)并调控通透性;以及(v) 将淀粉样前体蛋白切割为淀粉样β肽,后者能够调节血管生成过程。γ-分泌酶诱导的受体转位至细胞核提供了一条替代性细胞内信号通路,其作为转录的有效调节因子发挥作用。γ-分泌酶是一种由四种不同的整合蛋白(早老素、尼卡斯特林、Aph-1和Pen-2)组成的复合物,这些蛋白决定了γ-分泌酶的稳定性、底物结合、底物特异性和蛋白水解活性。这种看似复杂的情况为开发靶向γ-分泌酶激动剂/拮抗剂提供了众多可能性,这些激动剂/拮抗剂能够特异性调节血管生成过程。本综述将探讨γ-分泌酶的结构和功能、其在血管生成中作用的越来越多的证据以及涉及的底物、γ-分泌酶作为治疗靶点以及该领域未来的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64bd/4401127/a963b7576ec9/jcmm0012-0781-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验