Suppr超能文献

真核细胞中的氧化还原区室化

Redox compartmentalization in eukaryotic cells.

作者信息

Go Young-Mi, Jones Dean P

机构信息

Emory Clinical Biomarkers Laboratory and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta GA 30322, USA.

出版信息

Biochim Biophys Acta. 2008 Nov;1780(11):1273-90. doi: 10.1016/j.bbagen.2008.01.011. Epub 2008 Jan 26.

Abstract

Diverse functions of eukaryotic cells are optimized by organization of compatible chemistries into distinct compartments defined by the structures of lipid-containing membranes, multiprotein complexes and oligomeric structures of saccharides and nucleic acids. This structural and chemical organization is coordinated, in part, through cysteine residues of proteins which undergo reversible oxidation-reduction and serve as chemical/structural transducing elements. The central thiol/disulfide redox couples, thioredoxin-1, thioredoxin-2, GSH/GSSG and cysteine/cystine (Cys/CySS), are not in equilibrium with each other and are maintained at distinct, non-equilibrium potentials in mitochondria, nuclei, the secretory pathway and the extracellular space. Mitochondria contain the most reducing compartment, have the highest rates of electron transfer and are highly sensitive to oxidation. Nuclei also have more reduced redox potentials but are relatively resistant to oxidation. The secretory pathway contains oxidative systems which introduce disulfides into proteins for export. The cytoplasm contains few metabolic oxidases and this maintains an environment for redox signaling dependent upon NADPH oxidases and NO synthases. Extracellular compartments are maintained at stable oxidizing potentials. Controlled changes in cytoplasmic GSH/GSSG redox potential are associated with functional state, varying with proliferation, differentiation and apoptosis. Variation in extracellular Cys/CySS redox potential is also associated with proliferation, cell adhesion and apoptosis. Thus, cellular redox biology is inseparable from redox compartmentalization. Further elucidation of the redox control networks within compartments will improve the mechanistic understanding of cell functions and their disruption in disease.

摘要

真核细胞的多种功能通过将相容的化学反应组织到由含脂膜结构、多蛋白复合物以及糖类和核酸的寡聚体结构所界定的不同区室中得以优化。这种结构和化学组织部分通过经历可逆氧化还原并充当化学/结构转导元件的蛋白质的半胱氨酸残基进行协调。核心的硫醇/二硫键氧化还原对,即硫氧还蛋白-1、硫氧还蛋白-2、谷胱甘肽/氧化型谷胱甘肽(GSH/GSSG)和半胱氨酸/胱氨酸(Cys/CySS),彼此之间并非处于平衡状态,而是在线粒体、细胞核、分泌途径和细胞外空间中维持在不同的非平衡电位。线粒体含有还原性最强的区室,具有最高的电子传递速率,并且对氧化高度敏感。细胞核也具有较低的氧化还原电位,但相对抗氧化。分泌途径包含将二硫键引入蛋白质以供输出的氧化系统。细胞质中代谢氧化酶较少,这为依赖于NADPH氧化酶和一氧化氮合酶的氧化还原信号传导维持了一个环境。细胞外区室维持在稳定的氧化电位。细胞质中GSH/GSSG氧化还原电位的可控变化与功能状态相关,随增殖、分化和凋亡而变化。细胞外Cys/CySS氧化还原电位的变化也与增殖、细胞黏附和凋亡相关。因此,细胞氧化还原生物学与氧化还原区室化密不可分。进一步阐明区室内的氧化还原控制网络将增进对细胞功能及其在疾病中破坏机制的理解。

相似文献

1
Redox compartmentalization in eukaryotic cells.
Biochim Biophys Acta. 2008 Nov;1780(11):1273-90. doi: 10.1016/j.bbagen.2008.01.011. Epub 2008 Jan 26.
2
Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
Free Radic Biol Med. 2013 Oct;63:325-37. doi: 10.1016/j.freeradbiomed.2013.05.040. Epub 2013 Jun 2.
3
Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury.
Am J Respir Cell Mol Biol. 2009 Jan;40(1):90-8. doi: 10.1165/rcmb.2007-0447OC. Epub 2008 Jul 29.
4
Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state.
Circulation. 2005 Jun 7;111(22):2973-80. doi: 10.1161/CIRCULATIONAHA.104.515155. Epub 2005 May 31.
6
Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.
Am J Physiol Lung Cell Mol Physiol. 2009 Jan;296(1):L37-45. doi: 10.1152/ajplung.90401.2008. Epub 2008 Oct 17.
8
Diurnal variation in glutathione and cysteine redox states in human plasma.
Am J Clin Nutr. 2007 Oct;86(4):1016-23. doi: 10.1093/ajcn/86.4.1016.
9
Intestinal redox biology and oxidative stress.
Semin Cell Dev Biol. 2012 Sep;23(7):729-37. doi: 10.1016/j.semcdb.2012.03.014. Epub 2012 Mar 30.

引用本文的文献

2
Reductive stress induces unresolved ER stress and proteotoxic cardiomyopathy.
Redox Biol. 2025 Jun 9;86:103713. doi: 10.1016/j.redox.2025.103713.
6
Characterization of the glutathione redox state in the Golgi apparatus.
Redox Biol. 2025 Apr;81:103560. doi: 10.1016/j.redox.2025.103560. Epub 2025 Feb 19.
7
NADPH oxidases: redox regulation of cell homeostasis and disease.
Physiol Rev. 2025 Jul 1;105(3):1291-1428. doi: 10.1152/physrev.00034.2023. Epub 2025 Jan 15.
9
Enhancing peptide and PMO delivery to mouse airway epithelia by chemical conjugation with the amphiphilic peptide S10.
Mol Ther Nucleic Acids. 2024 Jul 31;35(3):102290. doi: 10.1016/j.omtn.2024.102290. eCollection 2024 Sep 10.
10
Dicobalt(ii) helices kill colon cancer cells enantiomer-specific mechanisms; DNA damage or microtubule disruption.
Chem Sci. 2024 Jun 14;15(28):11029-11037. doi: 10.1039/d4sc02541e. eCollection 2024 Jul 17.

本文引用的文献

1
Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.
Free Radic Biol Med. 2008 Mar 15;44(6):921-37. doi: 10.1016/j.freeradbiomed.2007.11.008. Epub 2007 Nov 28.
2
Regulation of endothelial cell proliferation by primary monocytes.
Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):97-104. doi: 10.1161/ATVBAHA.107.157537. Epub 2007 Nov 8.
3
Diurnal variation in glutathione and cysteine redox states in human plasma.
Am J Clin Nutr. 2007 Oct;86(4):1016-23. doi: 10.1093/ajcn/86.4.1016.
4
ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.
Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24. doi: 10.1038/nrm2256.
5
Nuclear redox-signaling is essential for apoptosis inhibition in endothelial cells--important role for nuclear thioredoxin-1.
Arterioscler Thromb Vasc Biol. 2007 Nov;27(11):2325-31. doi: 10.1161/ATVBAHA.107.149419. Epub 2007 Sep 6.
6
Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis.
EMBO J. 2007 Oct 3;26(19):4177-88. doi: 10.1038/sj.emboj.7601844. Epub 2007 Sep 6.
7
Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-beta.
Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L972-81. doi: 10.1152/ajplung.00010.2007. Epub 2007 Jul 20.
8
Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-kappaB activities.
Free Radic Biol Med. 2007 Jul 15;43(2):282-8. doi: 10.1016/j.freeradbiomed.2007.04.029. Epub 2007 Apr 29.
9
Control of extracellular cysteine/cystine redox state by HT-29 cells is independent of cellular glutathione.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1069-75. doi: 10.1152/ajpregu.00195.2007. Epub 2007 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验