Suppr超能文献

Cripto独立于其对Nodal自诱导的刺激作用促进前后轴的特化。

Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction.

作者信息

D'Andrea Daniela, Liguori Giovanna L, Le Good J Ann, Lonardo Enza, Andersson Olov, Constam Daniel B, Persico Maria G, Minchiotti Gabriella

机构信息

Stem Cell Fate Laboratory, Institute of Genetics and Biophysics A. Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy.

出版信息

J Cell Biol. 2008 Feb 11;180(3):597-605. doi: 10.1083/jcb.200709090.

Abstract

The EGF-CFC gene cripto governs anterior-posterior (A-P) axis specification in the vertebrate embryo. Existing models suggest that Cripto facilitates binding of Nodal to an ActRII-activin-like kinase (ALK) 4 receptor complex. Cripto also has a crucial function in cellular transformation that is independent of Nodal and ALK4. However, how ALK4-independent Cripto pathways function in vivo has remained unclear. We have generated cripto mutants carrying the amino acid substitution F78A, which blocks the Nodal-ALK4-Smad2 signaling both in embryonic stem cells and cell-based assays. In cripto(F78A/F78A) mouse embryos, Nodal fails to expand its own expression domain and that of cripto, indicating that F78 is essential in vivo to stimulate Smad-dependent Nodal autoinduction. In sharp contrast to cripto-null mutants, cripto(F78A/F78A) embryos establish an A-P axis and initiate gastrulation movements. Our findings provide in vivo evidence that Cripto is required in the Nodal-Smad2 pathway to activate an autoinductive feedback loop, whereas it can promote A-P axis formation and initiate gastrulation movements independently of its stimulatory effect on the canonical Nodal-ALK4-Smad2 signaling pathway.

摘要

表皮生长因子 - CFC基因CRIPTO调控脊椎动物胚胎的前后轴特化。现有模型表明,CRIPTO促进Nodal与激活素受体II - 激活素样激酶(ALK)4受体复合物的结合。CRIPTO在细胞转化中也具有关键作用,且该作用独立于Nodal和ALK4。然而,不依赖ALK4的CRIPTO途径在体内如何发挥作用仍不清楚。我们构建了携带氨基酸替代F78A的CRIPTO突变体,该突变体在胚胎干细胞和基于细胞的实验中均阻断了Nodal - ALK4 - Smad2信号通路。在CRIPTO(F78A/F78A)小鼠胚胎中,Nodal无法扩大其自身以及CRIPTO的表达域,这表明F78在体内对于刺激Smad依赖的Nodal自诱导至关重要。与CRIPTO基因敲除突变体形成鲜明对比的是,CRIPTO(F78A/F78A)胚胎建立了前后轴并启动了原肠胚形成运动。我们的研究结果提供了体内证据,表明在Nodal - Smad2途径中,CRIPTO是激活自诱导反馈环所必需的,而它可以独立于其对经典的Nodal - ALK4 - Smad2信号通路的刺激作用来促进前后轴形成并启动原肠胚形成运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d5/2234230/7896099bbf3a/jcb1800597f01.jpg

相似文献

1
Cripto promotes A-P axis specification independently of its stimulatory effect on Nodal autoinduction.
J Cell Biol. 2008 Feb 11;180(3):597-605. doi: 10.1083/jcb.200709090.
2
Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo.
Dev Biol. 2008 Mar 15;315(2):280-9. doi: 10.1016/j.ydbio.2007.12.027. Epub 2007 Dec 31.
3
Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal.
J Biol Chem. 2008 Feb 22;283(8):4490-500. doi: 10.1074/jbc.M704960200. Epub 2007 Dec 18.
5
Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells.
Mol Cell Biol. 2002 Apr;22(8):2586-97. doi: 10.1128/MCB.22.8.2586-2597.2002.
6
Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis.
Development. 2005 Dec;132(24):5539-51. doi: 10.1242/dev.02157. Epub 2005 Nov 16.
7
Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms.
Mol Cell. 2001 May;7(5):949-57. doi: 10.1016/s1097-2765(01)00249-0.
8
The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling.
J Biol Chem. 2007 Jul 13;282(28):20133-41. doi: 10.1074/jbc.M702593200. Epub 2007 May 15.
9
10
Cell-type specific regulation of myostatin signaling.
FASEB J. 2012 Apr;26(4):1462-72. doi: 10.1096/fj.11-191189. Epub 2011 Dec 27.

引用本文的文献

1
Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal.
Int J Mol Sci. 2021 Sep 21;22(18):10164. doi: 10.3390/ijms221810164.
2
Gastruloid Development Competence Discriminates Different States of Pluripotency.
Stem Cell Reports. 2021 Feb 9;16(2):354-369. doi: 10.1016/j.stemcr.2020.12.013. Epub 2021 Jan 21.
3
Translational significance of Nodal, Cripto-1 and Notch4 in adult nevi.
Oncol Lett. 2016 Aug;12(2):1349-1354. doi: 10.3892/ol.2016.4755. Epub 2016 Jun 21.
4
Plasticity underlies tumor progression: role of Nodal signaling.
Cancer Metastasis Rev. 2016 Mar;35(1):21-39. doi: 10.1007/s10555-016-9605-5.
7
Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling.
Immunol Res. 2016 Feb;64(1):104-14. doi: 10.1007/s12026-015-8724-3.
8
Nodal·Gdf1 heterodimers with bound prodomains enable serum-independent nodal signaling and endoderm differentiation.
J Biol Chem. 2014 Jun 20;289(25):17854-71. doi: 10.1074/jbc.M114.550301. Epub 2014 May 5.
10
Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer.
Am J Pathol. 2012 Jun;180(6):2188-200. doi: 10.1016/j.ajpath.2012.02.031. Epub 2012 Apr 26.

本文引用的文献

1
Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development.
Dev Biol. 2007 Nov 15;311(2):500-11. doi: 10.1016/j.ydbio.2007.08.060. Epub 2007 Sep 14.
2
Requirement of glycosylphosphatidylinositol anchor of Cripto-1 for trans activity as a Nodal co-receptor.
J Biol Chem. 2007 Dec 7;282(49):35772-86. doi: 10.1074/jbc.M707351200. Epub 2007 Oct 9.
3
The threonine that carries fucose, but not fucose, is required for Cripto to facilitate Nodal signaling.
J Biol Chem. 2007 Jul 13;282(28):20133-41. doi: 10.1074/jbc.M702593200. Epub 2007 May 15.
4
Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling.
Mol Cell Biol. 2006 Dec;26(24):9268-78. doi: 10.1128/MCB.01168-06. Epub 2006 Oct 9.
6
A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos.
Dev Biol. 2006 Apr 15;292(2):303-16. doi: 10.1016/j.ydbio.2006.01.006. Epub 2006 Feb 21.
8
XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning.
Development. 2006 Jan;133(2):237-50. doi: 10.1242/dev.02188. Epub 2005 Dec 8.
9
Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis.
Oncogene. 2005 Aug 29;24(37):5731-41. doi: 10.1038/sj.onc.1208918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验