Zheng Huiru, Wang Haiying, Glass David H
School of Computing and Mathematics, University of Ulster, Newtownabbey, UK.
IEEE Trans Syst Man Cybern B Cybern. 2008 Feb;38(1):5-16. doi: 10.1109/TSMCB.2007.908912.
Protein-protein interactions (PPIs) play crucial roles in virtually every aspect of cellular function within an organism. One important objective of modern biology is the extraction of functional modules, such as protein complexes from global protein interaction networks. This paper describes how seven genomic features and four experimental interaction data sets were combined using a Bayesian-networks-based data integration approach to infer PPI networks in yeast. Greater coverage and higher accuracy were achieved than in previous high-throughput studies of PPI networks in yeast. A Markov clustering algorithm was then used to extract protein complexes from the inferred protein interaction networks. The quality of the computed complexes was evaluated using the hand-curated complexes from the Munich Information Center for Protein Sequences database and gene-ontology-driven semantic similarity. The results indicated that, by integrating multiple genomic information sources, a better clustering result was obtained in terms of both statistical measures and biological relevance.
蛋白质-蛋白质相互作用(PPIs)在生物体细胞功能的几乎每个方面都起着至关重要的作用。现代生物学的一个重要目标是从全局蛋白质相互作用网络中提取功能模块,如蛋白质复合物。本文描述了如何使用基于贝叶斯网络的数据整合方法,将七个基因组特征和四个实验相互作用数据集相结合,以推断酵母中的蛋白质-蛋白质相互作用网络。与之前对酵母中蛋白质-蛋白质相互作用网络的高通量研究相比,实现了更高的覆盖率和更高的准确性。然后使用马尔可夫聚类算法从推断出的蛋白质相互作用网络中提取蛋白质复合物。使用来自慕尼黑蛋白质序列信息中心数据库的人工整理复合物和基因本体驱动的语义相似性来评估计算出的复合物的质量。结果表明,通过整合多个基因组信息来源,在统计量度和生物学相关性方面都获得了更好的聚类结果。