Suppr超能文献

基于高斯混合模型的分组视频错误隐藏

Packet video error concealment with Gaussian mixture models.

作者信息

Persson Daniel, Eriksson Thomas, Hedelin Per

机构信息

Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden.

出版信息

IEEE Trans Image Process. 2008 Feb;17(2):145-54. doi: 10.1109/TIP.2007.914151.

Abstract

In this paper, Gaussian mixture modeling is applied to error concealment for block-based packet video. A Gaussian mixture model for video data is obtained offline and is thereafter utilized online in order to restore lost blocks from spatial and temporal surrounding information. We propose estimators on closed form for missing data in the case of varying available neighboring contexts. Our error concealment strategy increases peak signal-to-noise ratio compared to previously proposed schemes. Examples of improved subjective visual quality by means of the proposed method are also supplied.

摘要

本文将高斯混合模型应用于基于块的分组视频的错误隐藏。针对视频数据的高斯混合模型是离线获得的,随后在线使用,以便从空间和时间周围信息中恢复丢失的块。我们针对不同可用相邻上下文的情况,提出了封闭形式的缺失数据估计器。与先前提出的方案相比,我们的错误隐藏策略提高了峰值信噪比。还提供了通过所提出方法改善主观视觉质量的示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验