Suppr超能文献

增强基于泊松方程的离散余弦变换(DCT)预测方法

Enhancing Poisson's equation-based approach for DCT prediction.

作者信息

Lakhani Gopal

出版信息

IEEE Trans Image Process. 2008 Mar;17(3):427-30. doi: 10.1109/TIP.2007.915560.

Abstract

Yamatani and Saito recently published an interesting method for predicting discrete cosine transform (DCT) coefficients of an image block, which uses partial derivatives of the image at the block boundary points. It estimates partial derivatives the same way for all four side boundary points. In this correspondence, we improve their estimation method for the left and top side boundary points by observing that the decoder can use 1-D DCT of the rightmost column of pixels of the block on the left side and bottom row pixels of the block on the top side instead of using just the DC of these two blocks. It led us to revise their prediction equations. Experimental results show that the cumulative reduction in the size of the first five AC coefficients obtained using their equations is 15.1%, and the same using our equations is 24.6%.

摘要

谷谷和齐藤最近发表了一种预测图像块离散余弦变换(DCT)系数的有趣方法,该方法使用图像在块边界点处的偏导数。它对所有四个侧边边界点都以相同的方式估计偏导数。在本通信中,我们通过观察到解码器可以使用左侧块最右列像素的一维DCT和顶部块最下行像素的一维DCT,而不是仅使用这两个块的直流分量,改进了他们对左侧和顶部边界点的估计方法。这使我们对他们的预测方程进行了修正。实验结果表明,使用他们的方程得到的前五个交流系数的尺寸累积减小率为15.1%,而使用我们的方程则为24.6%。

相似文献

4
Zero-block mode decision algorithm for H.264/AVC.用于H.264/AVC的零块模式决策算法
IEEE Trans Image Process. 2009 Mar;18(3):524-33. doi: 10.1109/TIP.2008.2009858. Epub 2009 Jan 9.
6
Edge-oriented uniform intra prediction.面向边缘的均匀帧内预测。
IEEE Trans Image Process. 2008 Oct;17(10):1827-36. doi: 10.1109/TIP.2008.2002835.
7
Rate bounds on SSIM index of quantized images.量化图像的结构相似性指数(SSIM)的速率边界
IEEE Trans Image Process. 2008 Sep;17(9):1624-39. doi: 10.1109/TIP.2008.2001400.
9
Packet video error concealment with Gaussian mixture models.基于高斯混合模型的分组视频错误隐藏
IEEE Trans Image Process. 2008 Feb;17(2):145-54. doi: 10.1109/TIP.2007.914151.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验