Suppr超能文献

增强随机子空间法

Boosting random subspace method.

作者信息

García-Pedrajas Nicolás, Ortiz-Boyer Domingo

机构信息

Department of Computing and Numerical Analysis, University of Córdoba, Spain.

出版信息

Neural Netw. 2008 Nov;21(9):1344-62. doi: 10.1016/j.neunet.2007.12.046. Epub 2008 Jan 6.

Abstract

In this paper we propose a boosting approach to random subspace method (RSM) to achieve an improved performance and avoid some of the major drawbacks of RSM. RSM is a successful method for classification. However, the random selection of inputs, its source of success, can also be a major problem. For several problems some of the selected subspaces may lack the discriminant ability to separate the different classes. These subspaces produce poor classifiers that harm the performance of the ensemble. Additionally, boosting RSM would also be an interesting approach for improving its performance. Nevertheless, the application of the two methods together, boosting and RSM, achieves poor results, worse than the results of each method separately. In this work, we propose a new approach for combining RSM and boosting. Instead of obtaining random subspaces, we search subspaces that optimize the weighted classification error given by the boosting algorithm, and then the new classifier added to the ensemble is trained using the obtained subspace. An additional advantage of the proposed methodology is that it can be used with any classifier, including those, such as k nearest neighbor classifiers, that cannot use boosting methods easily. The proposed approach is compared with standard ADABoost and RSM showing an improved performance on a large set of 45 problems from the UCI Machine Learning Repository. An additional study of the effect of noise on the labels of the training instances shows that the less aggressive versions of the proposed methodology are more robust than ADABoost in the presence of noise.

摘要

在本文中,我们提出了一种对随机子空间法(RSM)的增强方法,以实现性能的提升并避免RSM的一些主要缺点。RSM是一种成功的分类方法。然而,输入的随机选择,这一其成功的根源,也可能成为一个主要问题。对于一些问题,某些选定的子空间可能缺乏区分不同类别的判别能力。这些子空间会产生较差的分类器,从而损害集成的性能。此外,增强RSM也是一种提升其性能的有趣方法。然而,将增强和RSM这两种方法一起应用,得到的结果却很差,比单独使用每种方法的结果还要糟糕。在这项工作中,我们提出了一种将RSM和增强相结合的新方法。我们不是获取随机子空间,而是搜索能优化由增强算法给出的加权分类误差的子空间,然后使用所获得的子空间来训练添加到集成中的新分类器。所提出方法的另一个优点是它可以与任何分类器一起使用,包括那些难以使用增强方法的分类器,如k近邻分类器。我们将所提出的方法与标准的ADABoost和RSM进行了比较,结果表明在来自UCI机器学习库的45个问题的大型数据集上,该方法具有更好的性能。对噪声对训练实例标签的影响的进一步研究表明,在所提出方法的不太激进的版本在存在噪声的情况下比ADABoost更稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验