Ivanenko Y P, d'Avella A, Poppele R E, Lacquaniti F
Department of Neuromotor Physiology, Scientific Institute Foundation Santa Lucia, 306 via Ardeatina, 00179 Rome, Italy.
J Neurophysiol. 2008 Apr;99(4):1890-8. doi: 10.1152/jn.01308.2007. Epub 2008 Feb 13.
Leg segment rotations in human walking covary, so that the three-dimensional trajectory of temporal changes in the elevation angles lies close to a plane. Recently the role of central versus biomechanical constraints on the kinematics control of human locomotion has been questioned. Here we show, based on both modeling and experimental data, that the planar law of intersegmental coordination is not a simple consequence of biomechanics. First, the full limb behavior in various locomotion modes (walking on inclined surface, staircase stepping, air-stepping, crouched walking, hopping) can be expressed as 2 degrees of freedom planar motion even though the orientation of the plane and pairwise segment angle correlations may differ substantially. Second, planar covariation is not an inevitable outcome of any locomotor movement. It can be systematically violated in some conditions (e.g., when stooping and grasping an object on the floor during walking or in toddlers at the onset of independent walking) or transferred into a simple linear relationship in others (e.g., during stepping in place). Finally, all three major limb segments contribute importantly to planar covariation and its characteristics resulting in a certain endpoint trajectory defined by the limb axis length and orientation. Recent advances in the neural control of movement support the hypothesis about central representation of kinematics components.
人类行走时腿部各节段的旋转是协同变化的,因此仰角随时间变化的三维轨迹接近于一个平面。最近,关于中枢控制与生物力学约束在人类运动学控制中的作用受到了质疑。在此,我们基于建模和实验数据表明,节段间协调的平面定律并非生物力学的简单结果。首先,在各种运动模式(在倾斜表面行走、上楼梯、空中踏步、蹲行、跳跃)下的整个肢体行为都可表示为二维自由度的平面运动,尽管平面的方向和节段间角度的成对相关性可能有很大差异。其次,平面协同变化并非任何运动的必然结果。在某些情况下(例如,行走时弯腰抓取地板上的物体或幼儿刚开始独立行走时)它可能会被系统地打破,而在其他情况下(例如,原地踏步时)则可能转变为简单的线性关系。最后,所有三个主要肢体节段对平面协同变化及其特征都有重要贡献,从而产生由肢体轴长度和方向定义的特定端点轨迹。运动神经控制方面的最新进展支持了关于运动学成分中枢表征的假说。