Suppr超能文献

Adaptive fuzzy c-shells clustering and detection of ellipses.

作者信息

Dave R N, Bhaswan K

机构信息

New Jersey Inst. of Technol., Newark, NJ.

出版信息

IEEE Trans Neural Netw. 1992;3(5):643-62. doi: 10.1109/72.159055.

Abstract

Several generalizations of the fuzzy c-shells (FCS) algorithm are presented for characterizing and detecting clusters that are hyperellipsoidal shells. An earlier generalization, the adaptive fuzzy c-shells (AFCS) algorithm, is examined in detail and is found to have global convergence problems when the shapes to be detected are partial. New formulations are considered wherein the norm inducing matrix in the distance metric is unconstrained in contrast to the AFCS algorithm. The resulting algorithm, called the AFCS-U algorithm, performs better for partial shapes. Another formulation based on the second-order quadrics equation is considered. These algorithms can detect ellipses and circles in 2D data. They are compared with the Hough transform (HT)-based methods for ellipse detection. Existing HT-based methods for ellipse detection are evaluated, and a multistage method incorporating the good features of all the methods is used for comparison. Numerical examples of real image data show that the AFCS algorithm requires less memory than the HT-based methods, and it is at least an order of magnitude faster than the HT approach.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验