Suppr超能文献

在模式识别应用中确定并提高多层感知器的容错能力。

Determining and improving the fault tolerance of multilayer perceptrons in a pattern-recognition application.

作者信息

Emmerson M D, Damper R I

机构信息

Dept. of Electron. and Comput. Sci., Southampton Univ.

出版信息

IEEE Trans Neural Netw. 1993;4(5):788-93. doi: 10.1109/72.248456.

Abstract

We investigate empirically the performance under damage conditions of single- and multilayer perceptrons (MLP's), with various numbers of hidden units, in a representative pattern-recognition task. While some degree of graceful degradation was observed, the single-layer perceptron was considerably less fault tolerant than any of the multilayer perceptrons, including one with fewer adjustable weights. Our initial hypothesis that fault tolerance would be significantly improved for multilayer nets with larger numbers of hidden units proved incorrect. Indeed, there appeared to be a liability to having excess hidden units. A simple technique (called augmentation) is described, which was successful in translating excess hidden units into improved fault tolerance. Finally, our results were supported by applying singular value decomposition (SVD) analysis to the MLP's internal representations.

摘要

我们通过实证研究了具有不同数量隐藏单元的单层和多层感知器(MLP)在损伤条件下,于一项代表性模式识别任务中的性能。虽然观察到了一定程度的适度退化,但单层感知器的容错能力明显低于任何多层感知器,包括一个可调权重较少的多层感知器。我们最初的假设,即对于具有更多隐藏单元的多层网络,其容错能力将显著提高,结果证明是错误的。事实上,拥有过多隐藏单元似乎存在弊端。我们描述了一种简单的技术(称为增强),它成功地将过多的隐藏单元转化为了更高的容错能力。最后,通过对MLP的内部表示应用奇异值分解(SVD)分析,我们的结果得到了支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验