Suppr超能文献

数量性状基因座的双变量联合连锁与关联定位

Bivariate combined linkage and association mapping of quantitative trait loci.

作者信息

Jung Jeesun, Zhong Ming, Liu Lian, Fan Ruzong

机构信息

Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana, USA.

出版信息

Genet Epidemiol. 2008 Jul;32(5):396-412. doi: 10.1002/gepi.20313.

Abstract

In this paper, bivariate/multivariate variance component models are proposed for high-resolution combined linkage and association mapping of quantitative trait loci (QTL), based on combinations of pedigree and population data. Suppose that a quantitative trait locus is located in a chromosome region that exerts pleiotropic effects on multiple quantitative traits. In the region, multiple markers such as single nucleotide polymorphisms are typed. Two regression models, "genotype effect model" and "additive effect model", are proposed to model the association between the markers and the trait locus. The linkage information, i.e., recombination fractions between the QTL and the markers, is modeled in the variance and covariance matrix. By analytical formulae, we show that the "genotype effect model" can be used to model the additive and dominant effects simultaneously; the "additive effect model" only takes care of additive effect. Based on the two models, F-test statistics are proposed to test association between the QTL and markers. By analytical power analysis, we show that bivariate models can be more powerful than univariate models. For moderate-sized samples, the proposed models lead to correct type I error rates; and so the models are reasonably robust. As a practical example, the method is applied to analyze the genetic inheritance of rheumatoid arthritis for the data of The North American Rheumatoid Arthritis Consortium, Problem 2, Genetic Analysis Workshop 15, which confirms the advantage of the proposed bivariate models.

摘要

本文基于系谱数据和群体数据的组合,提出了用于数量性状基因座(QTL)高分辨率联合连锁与关联定位的双变量/多变量方差分量模型。假设一个数量性状基因座位于对多个数量性状产生多效性影响的染色体区域。在该区域内,对多个标记(如单核苷酸多态性)进行分型。提出了“基因型效应模型”和“加性效应模型”这两种回归模型,用于对标记与性状基因座之间的关联进行建模。连锁信息,即QTL与标记之间的重组率,在方差和协方差矩阵中进行建模。通过解析公式,我们表明“基因型效应模型”可用于同时对加性效应和显性效应进行建模;“加性效应模型”仅考虑加性效应。基于这两种模型,提出了F检验统计量来检验QTL与标记之间的关联性。通过解析功效分析,我们表明双变量模型比单变量模型更具功效。对于中等规模的样本,所提出的模型能得出正确的I型错误率;因此这些模型具有合理的稳健性。作为一个实际例子,该方法被应用于分析北美类风湿关节炎联盟数据(遗传分析研讨会15的问题2)中类风湿关节炎的遗传遗传情况,这证实了所提出的双变量模型的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验