Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
PLoS One. 2009 Dec 2;4(12):e8133. doi: 10.1371/journal.pone.0008133.
The availability of a large number of dense SNPs, high-throughput genotyping and computation methods promotes the application of family-based association tests. While most of the current family-based analyses focus only on individual traits, joint analyses of correlated traits can extract more information and potentially improve the statistical power. However, current TDT-based methods are low-powered. Here, we develop a method for tests of association for bivariate quantitative traits in families. In particular, we correct for population stratification by the use of an integration of principal component analysis and TDT. A score test statistic in the variance-components model is proposed. Extensive simulation studies indicate that the proposed method not only outperforms approaches limited to individual traits when pleiotropic effect is present, but also surpasses the power of two popular bivariate association tests termed FBAT-GEE and FBAT-PC, respectively, while correcting for population stratification. When applied to the GAW16 datasets, the proposed method successfully identifies at the genome-wide level the two SNPs that present pleiotropic effects to HDL and TG traits.
大量密集的单核苷酸多态性、高通量基因分型和计算方法的可用性促进了基于家系的关联测试的应用。虽然大多数当前基于家系的分析仅关注个体特征,但相关特征的联合分析可以提取更多信息,并有可能提高统计能力。然而,目前基于 TDT 的方法功效较低。在这里,我们开发了一种用于家庭中双变量定量特征关联检验的方法。特别是,我们通过使用主成分分析和 TDT 的整合来纠正群体分层。提出了方差分量模型中的得分检验统计量。广泛的模拟研究表明,当存在多效性效应时,所提出的方法不仅在个体特征的方法上表现更好,而且在纠正群体分层的情况下,还超过了两种流行的双变量关联测试 FBAT-GEE 和 FBAT-PC 的功效。当应用于 GAW16 数据集时,该方法成功地在全基因组水平上确定了对 HDL 和 TG 特征具有多效性影响的两个 SNP。