Suppr超能文献

血管加压素的细胞电生理作用概述。

Overview of cellular electrophysiological actions of vasopressin.

作者信息

Raggenbass Mario

机构信息

Department of Basic Neurosciences, University Medical Center, CH-1211 Geneva 4, Switzerland.

出版信息

Eur J Pharmacol. 2008 Apr 7;583(2-3):243-54. doi: 10.1016/j.ejphar.2007.11.074. Epub 2008 Jan 30.

Abstract

The nonapeptide vasopressin acts both as a hormone and as a neurotransmitter/neuromodulator. As a hormone, its target organs include kidney, blood vessels, liver, platelets and anterior pituitary. As a neurotransmitter/neuromodulator, vasopressin plays a role in autonomic functions, such as cardiovascular regulation and temperature regulation and is involved in complex behavioral and cognitive functions, such as sexual behavior, pair-bond formation and social recognition. At the neuronal level, vasopressin acts by enhancing membrane excitability and by modulating synaptic transmission. The present review will focus on the electrophysiological effects of vasopressin at the cellular level. A large proportion of the experiments summarized here have been performed in in vitro systems, especially in brain and spinal cord slices of the rat. Vasopressin exerts a powerful excitatory action on motoneurons of young rats and mice. It acts by generating a cationic inward current and/or by reducing a potassium conductance. In addition, vasopressin enhances the inhibitory synaptic input to motoneurons. By virtue of these actions, vasopressin may regulate the functioning of neuronal networks involved in motor control. In the amygdala, vasopressin can directly excite a subpopulation of neurons, whereas oxytocin, a related neuropeptide, can indirectly inhibit these same neurons. In the lateral septum, vasopressin exerts a similar dual action: it excites directly a neuronal subpopulation, but causes indirect inhibition of virtually all lateral septal neurons. The actions of vasopressin in the amygdala and lateral septum may represent at least part of the neuronal substrate by which vasopressin influences fear and anxiety-related behavior and social recognition, respectively. Central vasopressin can modulate cardiovascular parameters by causing excitation of spinal sympathetic preganglionic neurons, by increasing the inhibitory input to cardiac parasympathetic neurons in the nucleus ambiguus, by depressing the excitatory input to parabrachial neurons, or by inhibiting glutamate release at solitary tract axon terminals. By acting in or near the hypothalamic supraoptic nucleus, vasopressin can influence magnocellular neuron activity, suggesting that the peptide may exert some control on its own release at neurohypophyseal axon terminals. The central actions of vasopressin are mainly mediated by receptors of the V(1A) type, although recent studies have also reported the presence of vasopressin V(1B) receptors in the brain. Major unsolved problems are: (i) what is the transduction pathway activated following stimulation of central vasopressin V(1A) receptors? (ii) What is the precise nature of the cation channels and/or potassium channels operated by vasopressin? (iii) Does vasopressin, by virtue of its second messenger(s), interfere with other neurotransmitter/neuromodulator systems? In recent years, information concerning the mechanism of action of vasopressin at the neuronal level and its possible role and function at the whole-animal level has been accumulating. Translation of peptide actions at the cellular level into autonomic, behavioral and cognitive effects requires an intermediate level of integration, i.e. the level of neuronal circuitry. Here, detailed information is lacking. Further progress will probably require the introduction of new techniques, such as targeted in vivo whole-cell recording, large-scale recordings from neuronal ensembles or in vivo imaging in small animals.

摘要

九肽血管加压素既作为一种激素,又作为一种神经递质/神经调质发挥作用。作为一种激素,其靶器官包括肾脏、血管、肝脏、血小板和垂体前叶。作为一种神经递质/神经调质,血管加压素在自主功能中发挥作用,如心血管调节和体温调节,并参与复杂的行为和认知功能,如性行为、配偶关系形成和社会识别。在神经元水平上,血管加压素通过增强膜兴奋性和调节突触传递来发挥作用。本综述将聚焦于血管加压素在细胞水平上的电生理效应。这里总结的大部分实验是在体外系统中进行的,特别是在大鼠的脑和脊髓切片中。血管加压素对幼鼠和小鼠的运动神经元具有强大的兴奋作用。它通过产生阳离子内向电流和/或通过降低钾电导来发挥作用。此外,血管加压素增强了对运动神经元的抑制性突触输入。凭借这些作用,血管加压素可能调节参与运动控制的神经网络的功能。在杏仁核中,血管加压素可直接兴奋一部分神经元,而相关神经肽催产素则可间接抑制这些相同的神经元。在外侧隔区,血管加压素发挥类似的双重作用:它直接兴奋一个神经元亚群,但对几乎所有外侧隔区神经元产生间接抑制。血管加压素在杏仁核和外侧隔区的作用可能分别代表了血管加压素影响恐惧和焦虑相关行为以及社会识别的至少部分神经基质。中枢血管加压素可通过兴奋脊髓交感神经节前神经元、增加对疑核中心脏副交感神经元的抑制性输入、抑制臂旁神经元的兴奋性输入或抑制孤束轴突终末的谷氨酸释放来调节心血管参数。通过在下丘脑视上核内或其附近发挥作用,血管加压素可影响大细胞神经元的活动,这表明该肽可能对其在神经垂体轴突终末的自身释放施加某种控制。血管加压素的中枢作用主要由V(1A)型受体介导,尽管最近的研究也报道了脑中存在血管加压素V(1B)受体。主要未解决的问题是:(i) 刺激中枢血管加压素V(1A)受体后激活的转导途径是什么?(ii) 由血管加压素操作的阳离子通道和/或钾通道的确切性质是什么?(iii) 血管加压素凭借其第二信使是否会干扰其他神经递质/神经调质系统?近年来, 关于血管加压素在神经元水平上的作用机制及其在整个动物水平上可能的作用和功能的信息不断积累。将肽在细胞水平上的作用转化为自主、行为和认知效应需要一个中间整合水平,即神经元回路水平。在此方面,缺乏详细信息。进一步的进展可能需要引入新技术,如靶向体内全细胞记录、神经元群体的大规模记录或小动物体内成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验