Wang Fang, Xiao-Xuan Wu, Wen-Chen Zheng
Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China.
Spectrochim Acta A Mol Biomol Spectrosc. 2008 Dec 1;71(3):739-42. doi: 10.1016/j.saa.2007.12.039. Epub 2008 Jan 12.
The high-order perturbation formulas of spin-Hamiltonian (SH) parameters (g factors g( parallel), g( perpendicular) and zero-field splitting D) for 3d(8) ions in trigonal octahedral sites of crystals are derived considering not only the crystal-field (CF) mechanism, but also the charge-transfer (CT) mechanism (which is neglected in the extensively used CF theory). From these formulas and by considering the suitable impurity-induced local lattice relaxation, the SH parameters of CsCdX(3):Ni(2+) (X=Cl, Br) crystals are calculated. The results are in reasonable agreement with the experimental values. The sign of Q(CT) (Q=Deltag( parallel), Deltag( perpendicular) or D, where the g-shift Deltag(i)=g(i)-g(e), g(e) approximately 2.0023 is the free-electron value) due to CT mechanism is the same as that of the corresponding Q(CF) due to CF mechanism. The relative importance of CT mechanism (characterized by Q(CT)/Q(CF)) increases with the increasing atomic number of ligand X. So, for 3d(n) ion clusters in crystals with heavy element ligand ion (e.g., Br(-)), the reasonable explanations of SH parameters should contain the contributions from both CF and CT mechanisms.