Turner Bradley J, Talbot Kevin
MRC Functional Genetics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
Prog Neurobiol. 2008 May;85(1):94-134. doi: 10.1016/j.pneurobio.2008.01.001. Epub 2008 Jan 16.
Gain-of-function mutations in the Cu,Zn-superoxide dismutase (SOD1) gene are implicated in progressive motor neuron death and paralysis in one form of inherited amyotrophic lateral sclerosis (ALS). At present, transgenic expression of 12 human SOD1 mutations driven by the endogenous promoter is disease-causative and uniformly lethal in mice and rats, despite tremendous biochemical and biophysical variation between the mutants tested. This contrasts with the subclinical motor neuron disease phenotypes of wild-type SOD1 transgenic and knockout mice. Molecular mechanisms such as glutamate-induced excitotoxicity, axonal transport blockade, mitochondrial dysfunction, neuroinflammation and apoptosis triggered by mutant SOD1 catalysed oxidative reactions and/or protein misfolding are proposed to drive ALS pathogenesis. Around 100 genetic cross-breeding experiments with transgenic mutant SOD1 mice have been performed to verify these mechanisms in vivo. Furthermore, mounting evidence from mice with cell restrictive, repressible or chimeric expression of mutant SOD1 transgenes and bone marrow transplants supports non-neuronal origins of neuroprotection in ALS. Transgenic mutant SOD1 rodents have also provided the benchmark preclinical tool for evaluation of over 150 potential therapeutic anti-oxidant, anti-aggregation, anti-glutamatergic, anti-inflammatory, anti-apoptotic and neurotrophic pharmacological agents. Recent promising findings from gene and antisense therapies, cell replacement and combinatorial drug approaches in transgenic mutant SOD1 rodents are also emerging, but await successful translation in patients. This review summarises the wealth of known genetic and therapeutic modifiers in rodent models with SOD1 mutations and discusses these in the wider context of ALS pathoetiology and treatment.
铜锌超氧化物歧化酶(SOD1)基因的功能获得性突变与一种遗传性肌萎缩侧索硬化症(ALS)中运动神经元的进行性死亡和瘫痪有关。目前,由内源性启动子驱动的12种人类SOD1突变的转基因表达在小鼠和大鼠中具有致病性且均为致死性,尽管所测试的突变体之间存在巨大的生化和生物物理差异。这与野生型SOD1转基因和基因敲除小鼠的亚临床运动神经元疾病表型形成对比。有人提出,诸如谷氨酸诱导的兴奋性毒性、轴突运输阻断、线粒体功能障碍、神经炎症以及由突变型SOD1催化的氧化反应和/或蛋白质错误折叠引发的细胞凋亡等分子机制驱动了ALS的发病机制。已经进行了大约100次转基因突变型SOD1小鼠的遗传杂交实验,以在体内验证这些机制。此外,来自具有突变型SOD1转基因细胞限制性、可抑制性或嵌合性表达的小鼠以及骨髓移植的越来越多的证据支持了ALS中神经保护的非神经元起源。转基因突变型SOD1啮齿动物也为评估超过150种潜在的治疗性抗氧化、抗聚集、抗谷氨酸能、抗炎、抗凋亡和神经营养药理学药物提供了基准临床前工具。转基因突变型SOD1啮齿动物在基因和反义疗法、细胞替代和联合药物方法方面最近也有了一些有前景的发现,但仍有待在患者中成功转化。这篇综述总结了具有SOD1突变的啮齿动物模型中大量已知的遗传和治疗修饰因子,并在ALS病理病因学和治疗的更广泛背景下进行了讨论。