Suppr超能文献

在肌萎缩侧索硬化症小鼠模型中绘制神经胶质细胞自噬动力学揭示小胶质细胞和星形胶质细胞自噬功能障碍。

Mapping Glial Autophagy Dynamics in an Amyotrophic Lateral Sclerosis Mouse Model Reveals Microglia and Astrocyte Autophagy Dysfunction.

作者信息

Perera Nirma D, De Silva Subhavi, Tomas Doris, Cuic Brittany, Turner Bradley J

机构信息

The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.

Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.

出版信息

Glia. 2025 Sep;73(9):1860-1882. doi: 10.1002/glia.70045. Epub 2025 May 22.

Abstract

Amyotrophic lateral sclerosis (ALS) is defined by motor neuron death. However, recent research has identified non-cell-autonomous mechanisms, with significant involvement of glia in disease progression. We link previous observations of intracellular protein aggregates in glia to the autophagy pathway, the primary mediator of intracellular degradation of large protein aggregates. While dysfunctional autophagy is reported in ALS motor neurons, pre-clinical and clinical outcomes of autophagy modulators have been inconsistent, indicating the need for a nuanced understanding of autophagy dynamics across CNS cell types and ALS-affected regions. We hypothesized that glial autophagy is defective in ALS, with glial-type-specific dysfunction. To investigate in vivo autophagy dynamics, we intercrossed SOD1 mice with transgenic RFP-EGFP-LC3 autophagy reporter mice, enabling the quantification of autophagy degradation, termed flux. Investigation of autophagy dynamics in SOD1 oligodendrocytes, microglia, and astrocytes at key disease stages uncovered useful insights. While oligodendrocytes seemed to mount effective compensatory autophagic responses to combat mutant SOD1, significantly increased autophagy flux was observed in symptomatic spinal microglia and astrocytes in comparison to controls. Symptomatic SOD1 astrocytes displayed greater autophagy dysfunction compared to microglia, with subcellular analysis revealing cell compartment-specific, transient autophagy defects that returned to control levels by end stage. Interestingly, spinal glia showed more pronounced and earlier autophagy dysfunction compared to motor cortex glia, where autophagy dysfunction emerged later in disease end stage, aligning with greater spinal cord pathology reported in this model. Our results suggest that cell-type- and time-specific targeting might be essential when developing autophagy therapeutics for ALS, with prioritization of astrocytic autophagy modulation.

摘要

肌萎缩侧索硬化症(ALS)的定义是运动神经元死亡。然而,最近的研究发现了非细胞自主机制,其中神经胶质细胞在疾病进展中起重要作用。我们将先前在神经胶质细胞中观察到的细胞内蛋白质聚集体与自噬途径联系起来,自噬途径是细胞内降解大型蛋白质聚集体的主要介质。虽然在ALS运动神经元中报道了自噬功能失调,但自噬调节剂的临床前和临床结果并不一致,这表明需要对中枢神经系统(CNS)细胞类型和受ALS影响区域的自噬动态进行细致入微的了解。我们假设在ALS中神经胶质细胞自噬存在缺陷,具有神经胶质细胞类型特异性功能障碍。为了研究体内自噬动态,我们将SOD1小鼠与转基因RFP-EGFP-LC3自噬报告基因小鼠进行杂交,从而能够对自噬降解(称为通量)进行量化。在关键疾病阶段对SOD1少突胶质细胞、小胶质细胞和星形胶质细胞的自噬动态进行研究,发现了一些有用的见解。虽然少突胶质细胞似乎能够产生有效的代偿性自噬反应来对抗突变型SOD1,但与对照组相比,在有症状的脊髓小胶质细胞和星形胶质细胞中观察到自噬通量显著增加。有症状的SOD1星形胶质细胞与小胶质细胞相比,表现出更大的自噬功能障碍,亚细胞分析揭示了细胞区室特异性的、短暂的自噬缺陷,这些缺陷在疾病末期恢复到对照水平。有趣的是,与运动皮层神经胶质细胞相比,脊髓神经胶质细胞表现出更明显和更早的自噬功能障碍,运动皮层神经胶质细胞的自噬功能障碍在疾病末期出现得较晚,这与该模型中报道的更严重的脊髓病理学一致。我们的结果表明,在开发针对ALS的自噬疗法时,细胞类型和时间特异性靶向可能至关重要,应优先调节星形胶质细胞自噬。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验