Suppr超能文献

从低分辨率视频中进行稳健、基于对象的高分辨率图像重建。

Robust, object-based high-resolution image reconstruction from low-resolution video.

机构信息

Dept. of Electr. Eng., Rochester Univ., NY.

出版信息

IEEE Trans Image Process. 1997;6(10):1446-51. doi: 10.1109/83.624970.

Abstract

We propose a robust, object-based approach to high-resolution image reconstruction from video using the projections onto convex sets (POCS) framework. The proposed method employs a validity map and/or a segmentation map. The validity map disables projections based on observations with inaccurate motion information for robust reconstruction in the presence of motion estimation errors; while the segmentation map enables object-based processing where more accurate motion models can be utilized to improve the quality of the reconstructed image. Procedures for the computation of the validity map and segmentation map are presented. Experimental results demonstrate the improvement in image quality that can be achieved by the proposed methods.

摘要

我们提出了一种基于目标的鲁棒高分辨率图像重建方法,该方法使用凸集投影(POCS)框架从视频中获取高分辨率图像。该方法采用有效图和/或分割图。有效图根据具有不准确运动信息的观测结果禁用投影,以便在存在运动估计误差的情况下进行鲁棒重建;而分割图则支持基于对象的处理,在这种处理中,可以利用更准确的运动模型来提高重建图像的质量。本文还提出了计算有效图和分割图的方法。实验结果表明,所提出的方法可以提高图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验