Dept. of Image Process., COMSAT Lab., Clarksburg, MD.
IEEE Trans Image Process. 1997;6(2):251-67. doi: 10.1109/83.551696.
This paper presents multiresolution models for Gauss-Markov random fields (GMRFs) with applications to texture segmentation. Coarser resolution sample fields are obtained by subsampling the sample field at fine resolution. Although the Markov property is lost under such resolution transformation, coarse resolution non-Markov random fields can be effectively approximated by Markov fields. We present two techniques to estimate the GMRF parameters at coarser resolutions from the fine resolution parameters, one by minimizing the Kullback-Leibler distance and another based on local conditional distribution invariance. We also allude to the fact that different GMRF parameters at the fine resolution can result in the same probability measure after subsampling and present the results for first- and second-order cases. We apply this multiresolution model to texture segmentation. Different texture regions in an image are modeled by GMRFs and the associated parameters are assumed to be known. Parameters at lower resolutions are estimated from the fine resolution parameters. The coarsest resolution data is first segmented and the segmentation results are propagated upward to the finer resolution. We use the iterated conditional mode (ICM) minimization at all resolutions. Our experiments with synthetic, Brodatz texture, and real satellite images show that the multiresolution technique results in a better segmentation and requires lesser computation than the single resolution algorithm.
本文提出了用于高斯-马尔可夫随机场 (GMRF) 的多分辨率模型,并将其应用于纹理分割。通过对精细分辨率的样本场进行下采样,可以得到较粗分辨率的样本场。虽然在这种分辨率变换下,马尔可夫性质会丢失,但粗分辨率的非马尔可夫随机场可以通过马尔可夫场进行有效逼近。我们提出了两种从精细分辨率参数估计较粗分辨率的 GMRF 参数的技术,一种是通过最小化 Kullback-Leibler 距离,另一种是基于局部条件分布不变性。我们还提到了一个事实,即在进行下采样后,精细分辨率上的不同 GMRF 参数可能会导致相同的概率测度,并给出了一阶和二阶情况的结果。我们将此多分辨率模型应用于纹理分割。图像中的不同纹理区域由 GMRF 建模,并且假定相关参数是已知的。较低分辨率的参数是从精细分辨率参数中估计得到的。首先对最粗分辨率的数据进行分割,然后将分割结果向上传播到更精细的分辨率。我们在所有分辨率上都使用迭代条件模式 (ICM) 最小化。我们使用合成图像、Brodatz 纹理和真实卫星图像进行的实验表明,多分辨率技术可以实现更好的分割效果,并且比单分辨率算法需要更少的计算量。