Suppr超能文献

变换图像编码的联合门限和量化器选择:熵约束分析及其在基线 JPEG 中的应用。

Joint thresholding and quantizer selection for transform image coding: entropy-constrained analysis and applications to baseline JPEG.

机构信息

Dept. of Electr. and Comput. Eng., Rice Univ., Houston, TX.

出版信息

IEEE Trans Image Process. 1997;6(2):285-97. doi: 10.1109/83.551698.

Abstract

Striving to maximize baseline (Joint Photographers Expert Group-JPEG) image quality without compromising compatibility of current JPEG decoders, we develop an image-adaptive JPEG encoding algorithm that jointly optimizes quantizer selection, coefficient "thresholding", and Huffman coding within a rate-distortion (R-D) framework. Practically speaking, our algorithm unifies two previous approaches to image-adaptive JPEG encoding: R-D optimized quantizer selection and R-D optimal thresholding. Conceptually speaking, our algorithm is a logical consequence of entropy-constrained vector quantization (ECVQ) design principles in the severely constrained instance of JPEG-compatible encoding. We explore both viewpoints: the practical, to concretely derive our algorithm, and the conceptual, to justify the claim that our algorithm approaches the best performance that a JPEG encoder can achieve. This performance includes significant objective peak signal-to-noise ratio (PSNR) improvement over previous work and at high rates gives results comparable to state-of-the-art image coders. For example, coding the Lena image at 1.0 b/pixel, our JPEG encoder achieves a PSNR performance of 39.6 dB that slightly exceeds the quoted PSNR results of Shapiro's wavelet-based zero-tree coder. Using a visually based distortion metric, we can achieve noticeable subjective improvement as well. Furthermore, our algorithm may be applied to other systems that use run-length encoding, including intraframe MPEG and subband or wavelet coding.

摘要

为了在不影响当前 JPEG 解码器兼容性的前提下最大限度地提高基线(联合图像专家组-JPEG)图像质量,我们开发了一种图像自适应 JPEG 编码算法,该算法在率失真(R-D)框架内联合优化了量化器选择、系数“阈值”和霍夫曼编码。实际上,我们的算法统一了两种以前的图像自适应 JPEG 编码方法:R-D 优化的量化器选择和 R-D 最优阈值。从概念上讲,我们的算法是 JPEG 兼容编码的严格约束实例中熵约束矢量量化(ECVQ)设计原则的逻辑结果。我们探讨了这两个观点:实际的,具体推导我们的算法,以及概念的,证明我们的算法接近 JPEG 编码器所能达到的最佳性能。这种性能包括与以前的工作相比显著的客观峰值信噪比(PSNR)提高,并且在高码率下,结果可与最先进的图像编码器相媲美。例如,对 Lena 图像进行 1.0 b/pixel 编码,我们的 JPEG 编码器实现了 39.6 dB 的 PSNR 性能,略微超过了 Shapiro 的基于小波的零树编码器的 PSNR 结果。使用基于视觉的失真度量,我们还可以实现显著的主观改善。此外,我们的算法可应用于其他使用游程长度编码的系统,包括帧内 MPEG 和子带或小波编码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验