Suppr超能文献

用于生物数据分析的模糊关联规则:以酵母为例的案例研究

Fuzzy association rules for biological data analysis: a case study on yeast.

作者信息

Lopez Francisco J, Blanco Armando, Garcia Fernando, Cano Carlos, Marin Antonio

机构信息

Department of Computer Science and AI, University of Granada, 18071, Granada, Spain.

出版信息

BMC Bioinformatics. 2008 Feb 19;9:107. doi: 10.1186/1471-2105-9-107.

Abstract

BACKGROUND

Last years' mapping of diverse genomes has generated huge amounts of biological data which are currently dispersed through many databases. Integration of the information available in the various databases is required to unveil possible associations relating already known data. Biological data are often imprecise and noisy. Fuzzy set theory is specially suitable to model imprecise data while association rules are very appropriate to integrate heterogeneous data.

RESULTS

In this work we propose a novel fuzzy methodology based on a fuzzy association rule mining method for biological knowledge extraction. We apply this methodology over a yeast genome dataset containing heterogeneous information regarding structural and functional genome features. A number of association rules have been found, many of them agreeing with previous research in the area. In addition, a comparison between crisp and fuzzy results proves the fuzzy associations to be more reliable than crisp ones.

CONCLUSION

An integrative approach as the one carried out in this work can unveil significant knowledge which is currently hidden and dispersed through the existing biological databases. It is shown that fuzzy association rules can model this knowledge in an intuitive way by using linguistic labels and few easy-understandable parameters.

摘要

背景

近年来对多种基因组的图谱绘制产生了大量生物数据,这些数据目前分散在许多数据库中。需要整合各个数据库中的可用信息,以揭示已知数据之间可能存在的关联。生物数据往往不精确且存在噪声。模糊集理论特别适合对不精确数据进行建模,而关联规则则非常适合整合异构数据。

结果

在这项工作中,我们提出了一种基于模糊关联规则挖掘方法的新型模糊方法,用于生物知识提取。我们将这种方法应用于一个酵母基因组数据集,该数据集包含有关结构和功能基因组特征的异构信息。已经发现了许多关联规则,其中许多与该领域以前的研究一致。此外,清晰结果与模糊结果之间的比较证明,模糊关联比清晰关联更可靠。

结论

如本工作中所采用的综合方法可以揭示目前隐藏并分散在现有生物数据库中的重要知识。结果表明,模糊关联规则可以通过使用语言标签和几个易于理解的参数,以直观的方式对这些知识进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9b6/2277399/3ec194da016b/1471-2105-9-107-9.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验