Suppr超能文献

有序统计滤波器组。

Order statistic filter banks.

机构信息

Dept. of Electr. Eng., Delaware Univ., Newark, DE.

出版信息

IEEE Trans Image Process. 1996;5(6):827-37. doi: 10.1109/83.503902.

Abstract

Filter banks play a major role in multirate signal processing where these have been successfully used in a variety of applications. In the past, filter banks have been developed within the framework of linear filters. It is well known, however, that linear filters may have less than satisfactory performance whenever the underlying processes are non-Gaussian. We introduce the nonlinear class of order statistic (OS) filter banks that exploit the spectral characteristics of the input signal as well as its rank-ordering structure. The attained subband signals provide frequency and rank information in a localized time interval. OS filter banks can lead to significant gains over linear filter banks, particularly when the input signals contain abrupt changes and details, as is common with image and video signals. OS filter banks are formed using traditional linear filter banks as fundamental building blocks. It is shown that OS filter banks subsume linear filter banks and that the latter are obtained by simple linear transformations of the former. To illustrate the properties of OS filter banks, we develop simulations showing that the learning characteristics of the LMS algorithm, which are used to optimize the weight taps of OS filters, can be significantly improved by performing the adaptation in the OS subband domain.

摘要

滤波器组在多速率信号处理中起着重要作用,在各种应用中已经成功地使用了滤波器组。过去,滤波器组是在线性滤波器的框架内开发的。然而,众所周知,当基础过程是非高斯的时,线性滤波器的性能可能不尽如人意。我们引入了非线性类的有序统计(OS)滤波器组,利用输入信号的频谱特性及其排序结构。获得的子带信号在局部时间间隔内提供频率和排序信息。OS 滤波器组可以比线性滤波器组带来显著的增益,特别是当输入信号包含突然变化和细节时,这在图像和视频信号中很常见。OS 滤波器组使用传统的线性滤波器组作为基本构建块形成。结果表明,OS 滤波器组包含线性滤波器组,并且后者可以通过对前者进行简单的线性变换来获得。为了说明 OS 滤波器组的特性,我们开发了仿真,表明用于优化 OS 滤波器权值抽头的 LMS 算法的学习特性可以通过在 OS 子带域中进行自适应来显著改善。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验