Suppr超能文献

差异形态学与图像处理。

Differential morphology and image processing.

机构信息

Sch. of Electr. and Comput. Eng., Georgia Inst. of Technol., Atlanta, GA.

出版信息

IEEE Trans Image Process. 1996;5(6):922-37. doi: 10.1109/83.503909.

Abstract

Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

摘要

通过数学形态学进行图像处理,传统上使用几何直观地理解形态信号算子,并使用集合或格代数在空间域中分析它们。我们提供了一种基于微积分和动力系统思想的形态图像处理的统一视图和分析工具。这包括使用偏微分或差分方程 (PDE) 来建模图像中的距离传播或非线性多尺度过程的思想。我们简要回顾了一些实现离散距离变换的非线性差分方程,并将它们与光学中的 eikonal 方程的数值解联系起来。我们还回顾了一些建模多尺度形态算子演化的非线性 PDE,并使用形态导数。在提出的新思想中,我们开发了一些通用的二维最大/最小和差分方程,用于建模二维形态系统(包括距离计算)的空间动力学,以及一些称为斜率变换的非线性信号变换,它们可以在变换域中以与线性系统的傅里叶变换应用概念上相似的方式分析这些系统。因此,距离变换被证明是带通斜率滤波器。我们将多尺度形态 PDE 的分析以及通过加权距离变换求解的 eikonal PDE 视为非线性图像处理中的一个统一领域,我们称之为微分形态,并简要讨论了其在图像处理和计算机视觉中的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验