Suppr超能文献

微小RNA与脊椎动物形态复杂性的出现

MicroRNAs and the advent of vertebrate morphological complexity.

作者信息

Heimberg Alysha M, Sempere Lorenzo F, Moy Vanessa N, Donoghue Philip C J, Peterson Kevin J

机构信息

Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2946-50. doi: 10.1073/pnas.0712259105. Epub 2008 Feb 14.

Abstract

The causal basis of vertebrate complexity has been sought in genome duplication events (GDEs) that occurred during the emergence of vertebrates, but evidence beyond coincidence is wanting. MicroRNAs (miRNAs) have recently been identified as a viable causal factor in increasing organismal complexity through the action of these approximately 22-nt noncoding RNAs in regulating gene expression. Because miRNAs are continuously being added to animalian genomes, and, once integrated into a gene regulatory network, are strongly conserved in primary sequence and rarely secondarily lost, their evolutionary history can be accurately reconstructed. Here, using a combination of Northern analyses and genomic searches, we show that 41 miRNA families evolved at the base of Vertebrata, as they are found and/or detected in lamprey, but not in either ascidians or amphioxus (or any other nonchordate taxon). When placed into temporal context, the rate of miRNA acquisition and the extent of phenotypic evolution are anomalously high early in vertebrate history, far outstripping any other episode in chordate evolution. The genomic position of miRNA paralogues in humans, together with gene trees incorporating lamprey orthologues, indicates that although GDEs can account for an increase in the diversity of miRNA family members, which occurred before the last common ancestor of all living vertebrates, GDEs cannot account for the origin of these novel families themselves. We hypothesize that lying behind the origin of vertebrate complexity is the dramatic expansion of the noncoding RNA inventory including miRNAs, rather than an increase in the protein-encoding inventory caused by GDEs.

摘要

脊椎动物复杂性的因果基础一直被认为与脊椎动物出现过程中发生的基因组复制事件(GDEs)有关,但除了巧合之外,缺乏相关证据。最近,微小RNA(miRNAs)被确定为增加生物体复杂性的一个可能的因果因素,这些大约22个核苷酸的非编码RNA通过调节基因表达发挥作用。由于miRNAs不断被添加到动物基因组中,并且一旦整合到基因调控网络中,其初级序列就会高度保守,很少会再次丢失,因此它们的进化历史可以被准确重建。在这里,我们结合Northern分析和基因组搜索,发现41个miRNA家族在脊椎动物基部进化而来,因为在七鳃鳗中发现和/或检测到了它们,但在海鞘或文昌鱼(或任何其他非脊索动物类群)中却没有。当置于时间背景下时,在脊椎动物历史早期,miRNA获得的速率和表型进化的程度异常高,远远超过了脊索动物进化中的任何其他阶段。人类中miRNA旁系同源物的基因组位置,以及包含七鳃鳗直系同源物的基因树表明,虽然GDEs可以解释在所有现存脊椎动物的最后一个共同祖先之前发生的miRNA家族成员多样性的增加,但GDEs无法解释这些新家族本身的起源。我们推测,脊椎动物复杂性起源的背后是包括miRNAs在内的非编码RNA库的急剧扩张,而不是由GDEs导致的蛋白质编码库的增加。

相似文献

1
MicroRNAs and the advent of vertebrate morphological complexity.
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2946-50. doi: 10.1073/pnas.0712259105. Epub 2008 Feb 14.
2
Simultaneous expansions of microRNAs and protein-coding genes by gene/genome duplications in early vertebrates.
J Exp Zool B Mol Dev Evol. 2009 May 15;312B(3):164-70. doi: 10.1002/jez.b.21273.
4
The deep evolution of metazoan microRNAs.
Evol Dev. 2009 Jan-Feb;11(1):50-68. doi: 10.1111/j.1525-142X.2008.00302.x.
5
Identification and characterization of novel amphioxus microRNAs by Solexa sequencing.
Genome Biol. 2009;10(7):R78. doi: 10.1186/gb-2009-10-7-r78. Epub 2009 Jul 17.
6
The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint.
J Exp Zool B Mol Dev Evol. 2006 Nov 15;306(6):575-88. doi: 10.1002/jez.b.21118.
9
Evolution of the let-7 microRNA family.
RNA Biol. 2012 Mar;9(3):231-41. doi: 10.4161/rna.18974. Epub 2012 Mar 1.
10
Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
Mol Biol Evol. 2002 Sep;19(9):1440-50. doi: 10.1093/oxfordjournals.molbev.a004207.

引用本文的文献

1
An ancient and essential miRNA family controls cellular interaction pathways in .
Sci Adv. 2025 Sep 5;11(36):eadz1934. doi: 10.1126/sciadv.adz1934. Epub 2025 Sep 3.
2
Noncoding RNAs have a key role in butterfly speciation. What about other flora and fauna?
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2515930122. doi: 10.1073/pnas.2515930122. Epub 2025 Jul 9.
4
Role and potential mechanisms of miR‑100 in different diseases (Review).
Oncol Rep. 2025 Aug;54(2). doi: 10.3892/or.2025.8924. Epub 2025 Jun 6.
5
Circulating miRNAs in genitourinary cancer: pioneering advances in early detection and diagnosis.
J Liq Biopsy. 2025 Apr 25;8:100296. doi: 10.1016/j.jlb.2025.100296. eCollection 2025 Jun.
6
A Network Approach to White Band Disease Challenged Staghorn Coral microRNAs and Their Targets.
Ecol Evol. 2025 Apr 25;15(4):e71351. doi: 10.1002/ece3.71351. eCollection 2025 Apr.
7
MicroRNA mechanisms instructing Purkinje cell specification.
Neuron. 2025 May 21;113(10):1629-1646.e15. doi: 10.1016/j.neuron.2025.03.009. Epub 2025 Apr 2.
8
An optimised faecal microRNA sequencing pipeline reveals fibrosis in Trichuris muris infection.
Nat Commun. 2025 Feb 12;16(1):1589. doi: 10.1038/s41467-025-56698-w.
9
Coding Genes Helped the Origination and Diversification of Intragenic MicroRNAs.
Mol Biol Evol. 2025 Feb 3;42(2). doi: 10.1093/molbev/msaf036.
10
Organismal complexity strongly correlates with the number of protein families and domains.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2404332122. doi: 10.1073/pnas.2404332122. Epub 2025 Jan 28.

本文引用的文献

1
Are genome evolution, organism complexity and species diversity linked?
Integr Comp Biol. 2004 Nov;44(5):358-65. doi: 10.1093/icb/44.5.358.
2
The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records.
Philos Trans R Soc Lond B Biol Sci. 2008 Apr 27;363(1496):1435-43. doi: 10.1098/rstb.2007.2233.
3
Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes.
Genome Res. 2007 Dec;17(12):1865-79. doi: 10.1101/gr.6593807. Epub 2007 Nov 7.
4
Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs.
Genome Res. 2007 Dec;17(12):1850-64. doi: 10.1101/gr.6597907. Epub 2007 Nov 7.
6
Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization.
Science. 2007 Jul 6;317(5834):86-94. doi: 10.1126/science.1139158.
8
Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome.
PLoS Biol. 2007 Apr;5(4):e101. doi: 10.1371/journal.pbio.0050101.
10
The relationship between non-protein-coding DNA and eukaryotic complexity.
Bioessays. 2007 Mar;29(3):288-99. doi: 10.1002/bies.20544.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验