Suppr超能文献

预测残差矢量量化 [图像编码]。

Predictive residual vector quantization [image coding].

机构信息

Dept. of Electr. and Comput. Eng., State Univ. of New York, Buffalo, NY.

出版信息

IEEE Trans Image Process. 1995;4(11):1482-95. doi: 10.1109/83.469930.

Abstract

This paper presents a new vector quantization technique called predictive residual vector quantization (PRVQ). It combines the concepts of predictive vector quantization (PVQ) and residual vector quantization (RVQ) to implement a high performance VQ scheme with low search complexity. The proposed PRVQ consists of a vector predictor, designed by a multilayer perceptron, and an RVQ that is designed by a multilayer competitive neural network. A major task in our proposed PRVQ design is the joint optimization of the vector predictor and the RVQ codebooks. In order to achieve this, a new design based on the neural network learning algorithm is introduced. This technique is basically a nonlinear constrained optimization where each constituent component of the PRVQ scheme is optimized by minimizing an appropriate stage error function with a constraint on the overall error. This technique makes use of a Lagrangian formulation and iteratively solves a Lagrangian error function to obtain a locally optimal solution. This approach is then compared to a jointly designed and a closed-loop design approach. In the jointly designed approach, the predictor and quantizers are jointly optimized by minimizing only the overall error. In the closed-loop design, however, a predictor is first implemented; then the stage quantizers are optimized for this predictor in a stage-by-stage fashion. Simulation results show that the proposed PRVQ scheme outperforms the equivalent RVQ (operating at the same bit rate) and the unconstrained VQ by 2 and 1.7 dB, respectively. Furthermore, the proposed PRVQ outperforms the PVQ in the rate-distortion sense with significantly lower codebook search complexity.

摘要

本文提出了一种新的矢量量化技术,称为预测残差矢量量化(PRVQ)。它结合了预测矢量量化(PVQ)和残差矢量量化(RVQ)的概念,实现了一种具有低搜索复杂度的高性能 VQ 方案。所提出的 PRVQ 由一个多层感知器设计的矢量预测器和一个由多层竞争神经网络设计的 RVQ 组成。在我们提出的 PRVQ 设计中,一个主要任务是矢量预测器和 RVQ 码本的联合优化。为了实现这一点,引入了一种基于神经网络学习算法的新设计。该技术基本上是一个非线性约束优化,其中 PRVQ 方案的每个组成部分通过最小化适当的阶段误差函数并对整体误差施加约束来进行优化。该技术利用拉格朗日公式并迭代求解拉格朗日误差函数,以获得局部最优解。然后,将该方法与联合设计和闭环设计方法进行比较。在联合设计方法中,通过仅最小化整体误差来联合优化预测器和量化器。然而,在闭环设计中,首先实现预测器,然后以逐阶段的方式为该预测器优化阶段量化器。仿真结果表明,所提出的 PRVQ 方案在相同比特率下分别比等效 RVQ 和无约束 VQ 好 2dB 和 1.7dB。此外,所提出的 PRVQ 在率失真意义上优于 PVQ,并且具有显著更低的码本搜索复杂度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验