Suppr超能文献

用于包含移动物体的连续图像的降阶扩展卡尔曼滤波器。

A reduced order extended Kalman filter for sequential images containing a moving object.

机构信息

Dept. of Electr. and Comput. Eng., US Naval Postgraduate Sch., Monterey, CA.

出版信息

IEEE Trans Image Process. 1993;2(3):285-95. doi: 10.1109/83.236537.

Abstract

The extended Kalman filter (EKF) is applied to the reduction of noise in sequential images containing a moving object and to the estimation of the object's velocity. A computationally tractable approximation of the EKF, called the parallel extended Kalman filter (PEKF), is generated. The PEKF consists of a parallel bank of third-order EKFs, operating on the Fourier coefficients of the image, followed by a finite impulse response filter. The PEKF is shown to converge to the optimal (in the mean square sense) algorithm in the limit as the velocity estimation errors approach zero. The performance of the PEKF is demonstrated for very low signal-to-noise ratio (SNR) images. The PEKF also provides a natural setting for tracking slow changes in the object (real or apparent) and its velocity, since these variations are included in the model. The relation of the PEKF to another frequency domain algorithm for velocity estimation is discussed. The algorithm is illustrated by application to an example and its performance is demonstrated in the presence of velocity estimation errors.

摘要

扩展卡尔曼滤波器(EKF)被应用于降低含有运动物体的连续图像中的噪声,并用于估计物体的速度。生成了一种可计算的 EKF 近似,称为并行扩展卡尔曼滤波器(PEKF)。PEKF 由一组并行的三阶 EKF 组成,作用于图像的傅里叶系数上,然后是一个有限脉冲响应滤波器。随着速度估计误差趋近于零,PEKF 被证明在均方意义上收敛到最优算法。PEKF 的性能在非常低的信噪比(SNR)图像中得到了验证。PEKF 还为跟踪物体(真实或表观)及其速度的缓慢变化提供了一个自然的环境,因为这些变化包含在模型中。讨论了 PEKF 与另一种用于速度估计的频域算法的关系。该算法通过应用于一个示例进行说明,并在存在速度估计误差的情况下展示了其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验