Suppr超能文献

基于交互多模型算法的随机非线性混合动态系统状态估计。

State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

机构信息

Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai 600044, India.

Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai 600044, India.

出版信息

ISA Trans. 2015 Sep;58:520-32. doi: 10.1016/j.isatra.2015.06.005. Epub 2015 Aug 21.

Abstract

In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.

摘要

在这项工作中,针对受到随机状态干扰和测量中随机误差的非线性混合动态系统,使用交互多模型(IMM)算法制定了状态估计方案。为了计算混合动态系统的离散模式和连续状态估计值,本研究提出了一种基于 IMM 的扩展卡尔曼滤波器(IMM-EKF)或基于 IMM 的无导数卡尔曼滤波器。通过对双罐混合系统和切换非等温连续搅拌釜式反应器系统进行蒙特卡罗模拟研究,验证了所提出的基于 IMM 的状态估计方案的有效性。广泛的模拟研究表明,所提出的基于 IMM 的状态估计方案能够生成相当准确的连续状态估计值和离散模式。在存在和不存在传感器偏差的情况下,模拟研究表明,所提出的基于 IMM 无迹卡尔曼滤波器(IMM-UKF)的同时状态和参数估计方案优于基于多模型 UKF(MM-UKF)的同时状态和参数估计方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验