Suppr超能文献

利用时间相干性进行光流的概率和序列计算。

Probabilistic and sequential computation of optical flow using temporal coherence.

机构信息

Rosenstiel Sch. of Marine and Atmos. Sci., Miami Univ., FL.

出版信息

IEEE Trans Image Process. 1994;3(6):773-88. doi: 10.1109/83.336247.

Abstract

In the computation of dense optical flow fields, spatial coherence constraints are commonly used to regularize otherwise ill-posed problem formulations, providing spatial integration of data. We present a temporal, multiframe extension of the dense optical flow estimation formulation proposed by Horn and Schunck (1981) in which we use a temporal coherence constraint to yield the optimal fusing of data from multiple frames of measurements. Conceptually, standard Kalman filtering algorithms are applicable to the resulting multiframe optical flow estimation problem, providing a solution that is sequential and recursive in time. Experiments are presented to demonstrate that the resulting multiframe estimates are more robust to noise than those provided by the original, single-frame formulation. In addition, we demonstrate cases where the aperture problem of motion vision cannot be resolved satisfactorily without the temporal integration of data enabled by the proposed formulation. Practically, the large matrix dimensions involved in the problem prohibit exact implementation of the optimal Kalman filter. To overcome this limitation, we present a computationally efficient, yet near-optimal approximation of the exact filtering algorithm. This approximation has a precise interpretation as the sequential estimation of a reduced-order spatial model for the optical flow estimation error process at each time step and arises from an estimation-theoretic treatment of the filtering problem. Experiments also demonstrate the efficacy of this near-optimal filter.

摘要

在密集光流场的计算中,通常使用空间一致性约束来正则化否则病态的问题公式,提供数据的空间集成。我们提出了 Horn 和 Schunck(1981)提出的密集光流估计公式的时间、多帧扩展,其中我们使用时间一致性约束来产生来自多个测量帧的数据的最佳融合。从概念上讲,标准卡尔曼滤波算法适用于由此产生的多帧光流估计问题,提供了一个在时间上是顺序和递归的解决方案。实验结果表明,与原始的单帧公式相比,由此产生的多帧估计对噪声更鲁棒。此外,我们还证明了在没有所提出的公式所允许的数据时间集成的情况下,运动视觉的孔径问题无法得到满意解决的情况。实际上,问题中涉及的大矩阵维度禁止精确实现最优卡尔曼滤波器。为了克服这一限制,我们提出了一种计算效率高但接近最优的精确滤波算法的近似。这种近似作为在每个时间步对光流估计误差过程的降阶空间模型的顺序估计具有精确的解释,并且源自对滤波问题的估计理论处理。实验还证明了这种近似最优滤波器的有效性。

相似文献

5
Multiframe temporal estimation of cardiac nonrigid motion.心脏非刚性运动的多帧时间估计
IEEE Trans Image Process. 2000;9(4):651-65. doi: 10.1109/83.841941.
6
Optical flow computation using extended constraints.利用扩展约束进行光流计算。
IEEE Trans Image Process. 1996;5(5):720-39. doi: 10.1109/83.495956.
7
Fractional-order variational optical flow model for motion estimation.分数阶变分光流模型的运动估计。
Philos Trans A Math Phys Eng Sci. 2013 Apr 1;371(1990):20120148. doi: 10.1098/rsta.2012.0148. Print 2013 May 13.

引用本文的文献

1
Optical flow estimation for a periodic image sequence.周期性图像序列的光流估计。
IEEE Trans Image Process. 2010 Jan;19(1):1-10. doi: 10.1109/TIP.2009.2032341.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验