Corp. Res. and Dev., Motorola Inc., Schaumburg, IL.
IEEE Trans Image Process. 1994;3(6):821-33. doi: 10.1109/83.336250.
We present a new matrix vector formulation of a wavelet-based subband decomposition. This formulation allows for the decomposition of both the convolution operator and the signal in the subband domain. With this approach, any single channel linear space-invariant filtering problem can be cast into a multichannel framework. We apply this decomposition to the linear space-invariant image restoration problem and propose a family of multichannel linear minimum mean square error (LMMSE) restoration filters. These filters explicitly incorporate both within and between subband (channel) relations of the decomposed image. Since only within channel stationarity is assumed in the image model, this approach presents a new method for modeling the nonstationarity of images. Experimental results are presented which test the proposed multichannel LMMSE filters. These experiments show that if accurate estimates of the subband statistics are available, the proposed multichannel filters provide major improvements over the traditional single channel filters.
我们提出了一种基于子带分解的新矩阵向量公式。这种公式允许在子带域中分解卷积算子和信号。通过这种方法,任何单通道线性空间不变滤波问题都可以转化为多通道框架。我们将这种分解应用于线性空间不变图像恢复问题,并提出了一类多通道线性最小均方误差(LMMSE)恢复滤波器。这些滤波器明确地包含了分解图像的子带(通道)内部和之间的关系。由于在图像模型中仅假设了通道内的平稳性,因此这种方法为图像的非平稳性建模提供了一种新方法。实验结果表明,如果可以获得子带统计数据的准确估计,则所提出的多通道 LMMSE 滤波器可提供比传统单通道滤波器更大的改进。