Suppr超能文献

ATPase activities in peroxisome-proliferating yeast.

作者信息

Whitney A B, Bellion E

机构信息

Department of Chemistry, University of Texas, Arlington 76019-0065.

出版信息

Biochim Biophys Acta. 1991 Jul 5;1058(3):345-55. doi: 10.1016/s0005-2728(05)80130-6.

Abstract

Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验