Zibrova Darya, Grempler Rolf, Streicher Rüdiger, Kauschke Stefan G
Department of Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach an der Riss, Germany.
Biochem J. 2008 Jun 1;412(2):359-66. doi: 10.1042/BJ20071483.
In Type 2 diabetes, increased glycogenolysis contributes to the hyperglycaemic state, therefore the inhibition of GP (glycogen phosphorylase), a key glycogenolytic enzyme, is one of the possibilities to lower plasma glucose levels. Following this strategy, a number of GPis (GP inhibitors) have been described. However, certain critical issues are associated with their mode of action, e.g. an impairment of muscle function. The interaction between GP and the liver glycogen targeting subunit (termed G(L)) of PP1 (protein phosphatase 1) has emerged as a new potential anti-diabetic target, as the disruption of this interaction should increase glycogen synthesis, potentially providing an alternative approach to counteract the enhanced glycogenolysis without inhibiting GP activity. We identified an inhibitor of the G(L)-GP interaction (termed G(L)-GPi) and characterized its mechanism of action in comparison with direct GPis. In primary rat hepatocytes, at elevated glucose levels, the G(L)-GPi increased glycogen synthesis similarly to direct GPis. Direct GPis significantly reduced the cellular GP activity, caused a dephosphorylation of the enzyme and decreased the amounts of GP in the glycogen-enriched fraction; the G(L)-GPi did not influence any of these parameters. Both mechanisms increased glycogen accumulation at elevated glucose levels. However, at low glucose levels, only direct GPis led to increased glycogen amounts, whereas the G(L)-GPi allowed the mobilization of glycogen because it did not block the activity of GP. Due to this characteristic, G(L)-GPi in comparison with GPis could offer an advantageous risk/benefit profile circumventing the potential downsides of a complete prevention of glycogen breakdown while retaining glucose-lowering efficacy, suggesting that inhibition of the G(L)-GP interaction may provide an attractive novel approach for rebalancing the disturbed glycogen metabolism in diabetic patients.
在2型糖尿病中,糖原分解增加导致高血糖状态,因此抑制关键的糖原分解酶糖原磷酸化酶(GP)是降低血糖水平的一种可能途径。按照这一策略,已经描述了多种糖原磷酸化酶抑制剂(GPi)。然而,它们的作用方式存在一些关键问题,例如肌肉功能受损。GP与蛋白磷酸酶1(PP1)的肝糖原靶向亚基(称为G(L))之间的相互作用已成为一个新的潜在抗糖尿病靶点,因为这种相互作用的破坏应能增加糖原合成,有可能提供一种替代方法来抵消增强的糖原分解,而不抑制GP活性。我们鉴定了一种G(L)-GP相互作用的抑制剂(称为G(L)-GPi),并与直接的GPi相比对其作用机制进行了表征。在原代大鼠肝细胞中,在葡萄糖水平升高时,G(L)-GPi与直接的GPi类似地增加了糖原合成。直接的GPi显著降低了细胞内的GP活性,导致该酶去磷酸化,并减少了富含糖原部分中GP的量;而G(L)-GPi对这些参数均无影响。两种机制在葡萄糖水平升高时均增加了糖原积累。然而,在低葡萄糖水平时,只有直接的GPi导致糖原量增加,而G(L)-GPi则允许糖原动员,因为它不阻断GP的活性。由于这一特性,与GPi相比,G(L)-GPi可能具有有利的风险/效益概况,既能规避完全阻止糖原分解的潜在不利影响,又能保留降血糖功效,这表明抑制G(L)-GP相互作用可能为平衡糖尿病患者紊乱的糖原代谢提供一种有吸引力的新方法。