Suppr超能文献

Kv4.2通道中的门控电荷固定:关闭状态失活的基础。

Gating charge immobilization in Kv4.2 channels: the basis of closed-state inactivation.

作者信息

Dougherty Kevin, De Santiago-Castillo Jose A, Covarrubias Manuel

机构信息

Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia,PA 19107, USA.

出版信息

J Gen Physiol. 2008 Mar;131(3):257-73. doi: 10.1085/jgp.200709938.

Abstract

Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N- and P/C-type inactivation have been excluded, a clear understanding of closed-state inactivation in Kv4 channels has remained elusive. This is in part due to the lack of crucial information about the interactions between gating charge (Q) movement, activation, and inactivation. To overcome this limitation, we engineered a charybdotoxin (CTX)-sensitive Kv4.2 channel, which enabled us to obtain the first measurements of Kv4.2 gating currents after blocking K+ conduction with CTX (Dougherty and Covarrubias. 2006J. Gen. Physiol. 128:745-753). Here, we exploited this approach further to investigate the mechanism that links closed-state inactivation to slow Q-immobilization in Kv4 channels. The main observations revealed profound Q-immobilization at steady-state over a range of hyperpolarized voltages (-110 to -75 mV). Depolarization in this range moves <5% of the observable Q associated with activation and is insufficient to open the channels significantly. The kinetics and voltage dependence of Q-immobilization and ionic current inactivation between -153 and -47 mV are similar and independent of the channel's proximal N-terminal region (residues 2-40). A coupled state diagram of closed-state inactivation with a quasi-absorbing inactivated state explained the results from ionic and gating current experiments globally. We conclude that Q-immobilization and closed-state inactivation at hyperpolarized voltages are two manifestations of the same process in Kv4.2 channels, and propose that inactivation in the absence of N- and P/C-type mechanisms involves desensitization to voltage resulting from a slow conformational change of the voltage sensors, which renders the channel's main activation gate reluctant to open.

摘要

Kv4通道介导神经元树突-胞体A 型钾电流(I(SA))。功能性Kv4通道的可用性受膜电位动态调节,使得阈下去极化导致Kv4通道失活。其潜在过程涉及沿主要激活途径从关闭状态的失活。尽管已排除诸如N型和P/C型失活等经典失活机制,但对Kv4通道中关闭状态失活的清晰理解仍难以捉摸。部分原因是缺乏关于门控电荷(Q)移动、激活和失活之间相互作用的关键信息。为克服这一限制,我们构建了一种对蝎毒素(CTX)敏感的Kv4.2通道,这使我们能够在用CTX阻断K+传导后首次测量Kv4.2门控电流(Dougherty和Covarrubias,2006年,《普通生理学杂志》128:745 - 753)。在此,我们进一步利用该方法研究将Kv4通道中关闭状态失活与缓慢的Q固定联系起来的机制。主要观察结果显示,在一系列超极化电压(-110至-75 mV)下,稳态时存在显著的Q固定。此范围内的去极化使与激活相关的可观察到的Q移动<5%,且不足以显著打开通道。在-153至-47 mV之间,Q固定和离子电流失活的动力学及电压依赖性相似,且与通道近端N端区域(第2 - 40位残基)无关。一个具有准吸收失活状态的关闭状态失活耦合状态图全面解释了离子电流和门控电流实验的结果。我们得出结论,超极化电压下的Q固定和关闭状态失活是Kv4.2通道中同一过程的两种表现形式,并提出在不存在N型和P/C型机制的情况下,失活涉及电压传感器缓慢构象变化导致的对电压脱敏,这使得通道的主要激活门难以打开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce05/2248721/1a2c4d75d10e/jgp1310257f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验