Pomraenke R, Ropers C, Renard J, Lienau C, Lüer L, Polli D, Cerullo G
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
J Microsc. 2008 Feb;229(Pt 2):197-202. doi: 10.1111/j.1365-2818.2008.01886.x.
Conjugated organic materials in the solid state are generally amorphous or polycrystalline, with local order only achieved in mesoscopic domains with size ranging from a few tens to a few hundreds of nanometres. Understanding the interplay between mesoscopic order and macroscopic behaviour of these materials calls for a spatially resolved study of their optical properties. Near-field scanning optical microscopy allows one in principle to beat the diffraction limit in optical imaging. A quantitative measurement of nanoscale absorption spectra is, however, complicated by the difficulty of obtaining broadband near-field illumination with sufficiently high intensity. Here we demonstrate a near-field spectrometer with 100-nm spatial resolution based on an ultrabroadband Ti : sapphire oscillator coupled to an aperture-based near-field scanning optical microscopy, enabling structural phase-selective imaging of organic materials at the nanoscale. In polycrystalline phtalocyanine films we can distinguish between the crystalline and the amorphous phase, thus providing previously unavailable information on their mesoscopic texture.
固态共轭有机材料通常是无定形或多晶的,仅在尺寸从几十到几百纳米的介观区域内实现局部有序。了解这些材料的介观有序与宏观行为之间的相互作用需要对其光学性质进行空间分辨研究。近场扫描光学显微镜原则上允许人们突破光学成像中的衍射极限。然而,由于难以获得具有足够高强度的宽带近场照明,纳米级吸收光谱的定量测量变得复杂。在这里,我们展示了一种基于耦合到基于孔径的近场扫描光学显微镜的超宽带钛宝石振荡器的具有100纳米空间分辨率的近场光谱仪,能够在纳米尺度上对有机材料进行结构相选择性成像。在多晶酞菁薄膜中,我们可以区分结晶相和非晶相,从而提供有关其介观纹理的以前无法获得的信息。