Suppr超能文献

一种用于对任意微血管几何形状的基于敏感性的对比机制进行建模的新技术:有限微扰法。

A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method.

作者信息

Pathak Arvind P, Ward B Douglas, Schmainda Kathleen M

机构信息

JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Neuroimage. 2008 Apr 15;40(3):1130-43. doi: 10.1016/j.neuroimage.2008.01.022. Epub 2008 Jan 29.

Abstract

Recently, we demonstrated that vessel geometry is a significant determinant of susceptibility-induced contrast in MRI. This is especially relevant for susceptibility-contrast enhanced MRI of tumors with their characteristically abnormal vessel morphology. In order to better understand the biophysics of this contrast mechanism, it is of interest to model how various factors, including microvessel morphology contribute to the measured MR signal, and was the primary motivation for developing a novel computer modeling approach called the Finite Perturber Method (FPM). The FPM circumvents the limitations of traditional fixed-geometry approaches, and enables us to study susceptibility-induced contrast arising from arbitrary microvascular morphologies in 3D, such as those typically observed with brain tumor angiogenesis. Here we describe this new modeling methodology and some of its applications. The excellent agreement of the FPM with theory and the extant susceptibility modeling data, coupled with its computational efficiency demonstrates its potential to transform our understanding of the factors that engender susceptibility contrast in MRI.

摘要

最近,我们证明血管几何形状是MRI中磁化率诱导对比度的一个重要决定因素。这对于具有特征性异常血管形态的肿瘤的磁化率对比增强MRI尤为重要。为了更好地理解这种对比机制的生物物理学,模拟包括微血管形态在内的各种因素如何对测量的MR信号产生影响是很有意义的,这也是开发一种名为有限微扰法(FPM)的新型计算机建模方法的主要动机。FPM规避了传统固定几何方法的局限性,使我们能够研究三维中任意微血管形态产生的磁化率诱导对比度,例如脑肿瘤血管生成中通常观察到的那些形态。在这里,我们描述这种新的建模方法及其一些应用。FPM与理论和现有磁化率建模数据的出色一致性,再加上其计算效率,证明了它有可能改变我们对MRI中产生磁化率对比度的因素的理解。

相似文献

3
Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distributions in 2D.
Magn Reson Imaging. 1992;10(2):299-313. doi: 10.1016/0730-725x(92)90489-m.
7
Solving the problem of concomitant gradients in ultra-low-field MRI.解决超低场 MRI 中伴生梯度的问题。
J Magn Reson. 2010 Dec;207(2):213-9. doi: 10.1016/j.jmr.2010.09.001. Epub 2010 Sep 8.

引用本文的文献

本文引用的文献

4
Quantifying arbitrary magnetic susceptibility distributions with MR.
Magn Reson Med. 2004 May;51(5):1077-82. doi: 10.1002/mrm.20054.
10
Monocrystalline iron oxide nanocompounds (MION): physicochemical properties.
Magn Reson Med. 1993 May;29(5):599-604. doi: 10.1002/mrm.1910290504.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验