Pham Thang V, van de Wiel Mark A, Jimenez Connie R
Vrije Universiteit Medical Center.
Stat Appl Genet Mol Biol. 2008;7(2):Article11. doi: 10.2202/1544-6115.1355. Epub 2008 Feb 21.
The paper presents two analyzes of the MALDI-TOF mass spectrometry dataset. Both analyzes use the support vector machine as a tool to build a prediction model. The first analysis which is our contribution to the competition uses the given spectra data without further processing. In the second analysis, we employed an additional preprocessing step consisting of peak detection, peak alignment and feature selection based on statistical tests. The experimental results suggest that the preprocessing step with feature selection improves prediction accuracy.
本文展示了对基质辅助激光解吸电离飞行时间质谱数据集的两种分析。两种分析都使用支持向量机作为构建预测模型的工具。第一种分析是我们对竞赛的贡献,使用给定的光谱数据,无需进一步处理。在第二种分析中,我们采用了一个额外的预处理步骤,包括峰检测、峰校准和基于统计测试的特征选择。实验结果表明,带有特征选择的预处理步骤提高了预测准确性。