Suppr超能文献

将随机森林分类方法应用于从癌症患者和对照的质谱蛋白质组学图谱中检测到的峰。

Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls.

作者信息

Barrett Jennifer H, Cairns David A

机构信息

Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine.

出版信息

Stat Appl Genet Mol Biol. 2008;7(2):Article4. doi: 10.2202/1544-6115.1349. Epub 2008 Feb 8.

Abstract

The random forest classification method was applied to classify samples from 76 breast cancer patients and 77 controls whose proteomic profile had been obtained using mass spectrometry. The analysis consisted of two stages, the detection of peaks from the profiles and the construction of a classification rule using random forests. Using a peak detection method based on finding common local maxima in the smoothed sample spectra, 444 peaks were detected, reducing to 365 robust peaks found in at least 7 out of 10 random subsets of samples. Subjects were classified as cases or controls using the random forest algorithm applied to the 365 peaks. Based on the prediction of the status of out-of-bag samples, the total error rate was 16.3%, with a sensitivity of 81.6% and a specificity of 85.7%. Measures of importance of each of the peaks were calculated to identify regions of the spectrum influencing the classification, and the four most important peaks were identified as mz3863_13, mz2943_12, mz3193_44 and mz8925_94. Combining initial peak detection with the random forest algorithm provides a high-performance classification system for proteomic data, with unbiased estimates of future performance.

摘要

随机森林分类方法被应用于对76名乳腺癌患者和77名对照的样本进行分类,这些样本的蛋白质组学图谱是通过质谱法获得的。分析包括两个阶段,即从图谱中检测峰以及使用随机森林构建分类规则。使用基于在平滑样本光谱中找到共同局部最大值的峰检测方法,检测到444个峰,减少到在10个随机样本子集中至少7个中发现的365个稳健峰。使用应用于365个峰的随机森林算法将受试者分类为病例或对照。根据袋外样本状态的预测,总错误率为16.3%,灵敏度为81.6%,特异性为85.7%。计算每个峰的重要性度量以识别影响分类的光谱区域,并且确定四个最重要的峰为mz3863_13、mz2943_12、mz3193_44和mz8925_94。将初始峰检测与随机森林算法相结合为蛋白质组学数据提供了一个高性能的分类系统,并对未来性能进行无偏估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验