Suppr超能文献

全局参数搜索揭示了哺乳动物生物钟的设计原理。

Global parameter search reveals design principles of the mammalian circadian clock.

作者信息

Locke James C W, Westermark Pål O, Kramer Achim, Herzel Hanspeter

机构信息

Institute for Theoretical Biology, Humboldt-University Berlin, 10115 Berlin, Germany.

出版信息

BMC Syst Biol. 2008 Feb 29;2:22. doi: 10.1186/1752-0509-2-22.

Abstract

BACKGROUND

Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/dark (LD) cycle is abruptly advanced or delayed by several hours.

RESULTS

Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment.

CONCLUSION

Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the robustness and phase resetting properties of the mammalian clock, even at the single neuron level.

摘要

背景

几乎所有生物都进化出了一个昼夜节律(约24小时)时钟,该时钟在整个昼夜周期中精确地控制着生理和行为过程。在哺乳动物中产生这些约24小时节律的视交叉上核(SCN)由数千个神经元组成。每个神经元都包含一个产生分子振荡的基因调控网络,并且单个神经元振荡通过细胞间耦合(可能通过神经递质)实现同步。尽管这种基本机制目前已被接受并在数学模型中得到重现,但关于SCN设计原则的几个基本问题仍知之甚少。例如,SCN的一个显著特性是,在“时差”类型的实验后,即当明暗(LD)周期突然提前或延迟数小时时,SCN节律的相位会迅速重置。

结果

在这里,我们描述了对先前构建的SCN简化模型进行广泛的参数优化,以进一步了解其设计原则。通过检查参数优化的前50个解决方案,我们表明神经递质在产生分子昼夜节律中的作用极其重要。此外,我们表明,当一种神经递质驱动耦合阻尼振荡器系统的节律时,它表现出非常强大的同步性,并且更容易被明暗周期所夹带。我们还能够在模拟中重现“时差”类型实验后出现的快速节律重置。

结论

我们的工作表明,即使是对哺乳动物时钟极其简化的模型,仔细探索参数空间也能揭示意想不到的行为和重要的预测。我们的结果表明,神经递质反馈回路在哺乳动物时钟的稳健性和相位重置特性中起着关键作用,即使在单个神经元水平也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6c3/2277373/57a9a494c19e/1752-0509-2-22-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验