Suppr超能文献

大规模基因集数据的关联分析。

Association analysis for large-scale gene set data.

作者信息

Kirov Stefan A, Zhang Bing, Snoddy Jay R

机构信息

Oak Ridge National Laboratory, University of Tennessee, USA.

出版信息

Methods Mol Biol. 2007;408:19-33. doi: 10.1007/978-1-59745-547-3_2.

Abstract

High-throughput experiments in biology often produce sets of genes of potential interests. Some of those gene sets might be of considerable size. Therefore, computer-assisted analysis is necessary for the biological interpretation of the gene sets, and for creating working hypotheses, which can be tested experimentally. One obvious way to analyze gene set data is to associate the genes with a particular biological feature, for example, a given pathway. Statistical analysis could be used to evaluate if a gene set is truly associated with a feature. Over the past few years many tools that perform such analysis have been created. In this chapter, using WebGestalt as an example, it will be explained in detail how to associate gene sets with functional annotations, pathways, publication records, and protein domains.

摘要

生物学中的高通量实验常常会产生一系列潜在感兴趣的基因。其中一些基因集可能规模相当大。因此,对于基因集的生物学解读以及形成可通过实验验证的工作假设而言,计算机辅助分析是必要的。分析基因集数据的一种明显方法是将基因与特定的生物学特征相关联,例如给定的通路。统计分析可用于评估一个基因集是否真的与某一特征相关。在过去几年中,已经创建了许多执行此类分析的工具。在本章中,将以WebGestalt为例,详细解释如何将基因集与功能注释、通路、出版物记录和蛋白质结构域相关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验