Suppr超能文献

内在无序性的预测及其在功能蛋白质组学中的应用。

Prediction of intrinsic disorder and its use in functional proteomics.

作者信息

Uversky Vladimir N, Radivojac Predrag, Iakoucheva Lilia M, Obradovic Zoran, Dunker A Keith

机构信息

School of Medicine, Indiana University, Indianapolis, USA.

出版信息

Methods Mol Biol. 2007;408:69-92. doi: 10.1007/978-1-59745-547-3_5.

Abstract

The number of experimentally verified, intrinsically disordered (ID) proteins is rapidly rising. Research is often focused on a structural characterization of a given protein, looking for several key features. However, ID proteins with their dynamic structures that interconvert on a number of time-scales are difficult targets for the majority of traditional biophysical and biochemical techniques. Structural and functional analyses of these proteins can be significantly aided by disorder predictions. The current advances in the prediction of ID proteins and the use of protein disorder prediction in the fields of molecular biology and bioinformatics are briefly overviewed herein. A method is provided to utilize intrinsic disorder knowledge to gain structural and functional information related to individual proteins, protein groups, families, classes, and even entire proteomes.

摘要

经实验验证的内在无序(ID)蛋白质的数量正在迅速增加。研究通常集中于给定蛋白质的结构表征,寻找几个关键特征。然而,ID蛋白质具有在多个时间尺度上相互转换的动态结构,对于大多数传统生物物理和生化技术来说,它们都是难以研究的对象。对这些蛋白质的结构和功能分析可以通过无序预测得到显著帮助。本文简要概述了ID蛋白质预测的当前进展以及蛋白质无序预测在分子生物学和生物信息学领域的应用。提供了一种利用内在无序知识来获取与单个蛋白质、蛋白质组、家族、类别甚至整个蛋白质组相关的结构和功能信息的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验