Pérez-Moreno Javier, Clays Koen, Kuzyk Mark G
Department of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
J Chem Phys. 2008 Feb 28;128(8):084109. doi: 10.1063/1.2834198.
The generalized Thomas-Kuhn sum rules are used to eliminate the explicit dependence on dipolar terms in the traditional sum-over-states (SOS) expression for the second hyperpolarizability to derive a new, yet equivalent, SOS expression. This new dipole-free expression may be better suited to study the second hyperpolarizability of nondipolar systems such as quadrupolar, octupolar, and dodecapolar structures. The two expressions lead to the same fundamental limits of the off-resonance second hyperpolarizability; and when applied to a particle in a box and a clipped harmonic oscillator, have the same frequency dependence. We propose that the new dipole-free equation, when used in conjunction with the standard SOS expression, can be used to develop a three-state model of the dispersion of the third-order susceptibility that can be applied to molecules in cases where normally many more states would have been required. Furthermore, a comparison between the two expressions can be used as a convergence test of molecular orbital calculations when applied to the second hyperpolarizability.
广义托马斯 - 库恩求和规则用于消除传统态叠加(SOS)表达式中二阶超极化率对偶极项的显式依赖,从而推导出一个新的但等效的SOS表达式。这个新的无偶极表达式可能更适合研究诸如四极、八极和十二极结构等非偶极系统的二阶超极化率。这两个表达式导致非共振二阶超极化率的相同基本极限;并且当应用于箱中粒子和截断的谐振子时,具有相同的频率依赖性。我们提出,当新的无偶极方程与标准SOS表达式结合使用时,可用于建立三阶极化率色散的三态模型,该模型可应用于通常需要更多态的分子情况。此外,当应用于二阶超极化率时,这两个表达式之间的比较可作为分子轨道计算的收敛性测试。