Tarvainen O, Rouleau G, Keller R, Geros E, Stelzer J, Ferris J
Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Rev Sci Instrum. 2008 Feb;79(2 Pt 2):02A501. doi: 10.1063/1.2801544.
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
洛斯阿拉莫斯中子科学中心(LANSCE)目前使用的转换器型负离子源基于在丝状驱动放电中通过铯增强表面产生H(-)离子束。在这种离子源中,提取的H(-)束流受到可实现的等离子体密度的限制,而等离子体密度主要取决于灯丝的电子发射电流。可以通过提高灯丝温度来增加发射电流,但不幸的是,这不仅会缩短灯丝寿命,还会导致灯丝上的金属蒸发增加,这些金属沉积在H(-)转换器表面并降低其性能。因此,我们启动了一个离子源开发项目,重点是用能够产生具有低电子能量的高密度氢等离子体的螺旋波等离子体发生器取代转换器源的这些热电子阴极(灯丝)。在我们的研究中,到目前为止已经表明,通过在等离子体中激发螺旋波,可以显著提高表面转换源的等离子体密度,并且我们期望在束流亮度和两次维护之间的时间方面提高表面转换器H(-)离子源的性能。本文介绍了这种新源的设计和初步结果,并讨论了与这种新颖设计产生H(-)离子束相关的物理过程。最终,我们将这种方法视为朝着我们的长期目标迈出的中间步骤,即将螺旋波等离子体发生器与SNS型主放电室相结合,这将使我们能够分别优化等离子体阴极(螺旋波)的等离子体特性和H(-)产生(主放电),以进一步提高提取的H(-)离子束的亮度。