Suppr超能文献

表皮葡萄球菌血流感染的动力学系统分析

Dynamical system analysis of Staphylococcus epidermidis bloodstream infection.

作者信息

Chung Hangyul M, Cartwright Megan M, Bortz David M, Jackson Trachette L, Younger John G

机构信息

Department of Emergency Medicine and Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Shock. 2008 Nov;30(5):518-26. doi: 10.1097/SHK.0b013e31816a0b77.

Abstract

Unlike many localized infections, the development and resolution of bacteremia involves physical and immunological interactions between many anatomic sites. In an effort to better understand these interactions, we developed a computational model of bacteremia as a dynamical system fashioned after multicompartmental pharmacodynamic models, incorporating bacterial proliferation and clearance in the blood, liver, spleen, and lungs, and the transport of pathogens between these sites. A system of four first-order homogeneous ODEs was developed. Blood and organ bacterial burdens were measured at various time points from 3 to 48 h postinoculation using an LD25 murine model of Staphylococcus epidermidis bacteremia. Using these empiric data, solutions to the mathematical model were recovered. A bootstrap resampling method was used to generate 95% confidence intervals around the solved parameters. The validity of the model was examined in parallel experiments using animals acutely immunocompromised with cyclophosphamide; the model captured abnormalities in bacterial partitioning previously described with this antineoplastic agent. Lastly, the approach was used to explore possible benefits to clinically observed hyperdynamic blood flow during sepsis: in simulation, normal mice, but not those treated with cyclophosphamide, enjoyed significantly more rapid bacterial clearance from the bloodstream under hyperdynamic conditions.

摘要

与许多局部感染不同,菌血症的发展和消退涉及多个解剖部位之间的物理和免疫相互作用。为了更好地理解这些相互作用,我们构建了一个菌血症计算模型,该模型是一个基于多室药效学模型构建的动态系统,纳入了血液、肝脏、脾脏和肺中细菌的增殖和清除,以及这些部位之间病原体的转运。我们建立了一个由四个一阶齐次常微分方程组成的系统。使用表皮葡萄球菌菌血症的LD25小鼠模型,在接种后3至48小时的不同时间点测量血液和器官中的细菌负荷。利用这些经验数据,得到了数学模型的解。采用自助重采样方法在求解参数周围生成95%的置信区间。在使用环磷酰胺急性免疫受损的动物的平行实验中检验了该模型的有效性;该模型捕捉到了先前用这种抗肿瘤药物描述的细菌分布异常。最后,该方法被用于探索脓毒症期间临床观察到的高动力血流可能带来的益处:在模拟中,正常小鼠在高动力条件下从血液中清除细菌的速度明显更快,但用环磷酰胺治疗的小鼠则不然。

相似文献

1
Dynamical system analysis of Staphylococcus epidermidis bloodstream infection.
Shock. 2008 Nov;30(5):518-26. doi: 10.1097/SHK.0b013e31816a0b77.
3
Vancomycin-intermediate Staphylococcus epidermidis: curio or omen?
Infect Control Hosp Epidemiol. 1999 Mar;20(3):163-5. doi: 10.1086/501604.
4
Clinical characteristics of infections in humans due to Staphylococcus epidermidis.
Methods Mol Biol. 2014;1106:1-16. doi: 10.1007/978-1-62703-736-5_1.
5
Involvement of the Iron-Regulated Loci and in Biofilm Formation and Survival of Staphylococcus epidermidis within the Host.
Microbiol Spectr. 2022 Feb 23;10(1):e0216821. doi: 10.1128/spectrum.02168-21. Epub 2022 Jan 12.
9
The emergence of decreased susceptibility to vancomycin in Staphylococcus epidermidis.
Infect Control Hosp Epidemiol. 1999 Mar;20(3):167-70. doi: 10.1086/501605.
10
Staphylococcus epidermidis--the 'accidental' pathogen.
Nat Rev Microbiol. 2009 Aug;7(8):555-67. doi: 10.1038/nrmicro2182.

引用本文的文献

1
Modelling of the SDF-1/CXCR4 regulated homing of therapeutic mesenchymal stem/stromal cells in mice.
PeerJ. 2018 Dec 6;6:e6072. doi: 10.7717/peerj.6072. eCollection 2018.
3
A Novel Macroscale Acoustic Device for Blood Filtration.
J Med Device. 2018 Mar;12(1):0110081-110087. doi: 10.1115/1.4038498. Epub 2018 Jan 19.
4
Dynamic Computational Model of Symptomatic Bacteremia to Inform Bacterial Separation Treatment Requirements.
PLoS One. 2016 Sep 22;11(9):e0163167. doi: 10.1371/journal.pone.0163167. eCollection 2016.
5
Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect.
Infect Immun. 2016 Sep 19;84(10):2933-43. doi: 10.1128/IAI.00290-16. Print 2016 Oct.
8
rheology of bacterial biofilms.
Soft Matter. 2013 Jan 7;9(1):122-131. doi: 10.1039/C2SM27005F.
9
Low-dose cyclophosphamide improves survival in a murine treatment model of sepsis.
Shock. 2015 Jan;43(1):92-8. doi: 10.1097/SHK.0000000000000263.

本文引用的文献

1
Kinetics of distribution of insulin between two body water compartments.
Proc Soc Exp Biol Med. 1949 Apr;70(4):672-4. doi: 10.3181/00379727-70-17029.
2
Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.
Nat Med. 2007 Apr;13(4):463-9. doi: 10.1038/nm1565. Epub 2007 Mar 25.
3
Lipopolysaccharide O-antigen promotes persistent murine bacteremia.
Shock. 2007 Feb;27(2):186-91. doi: 10.1097/01.shk.0000238058.23837.21.
5
A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration.
J Theor Biol. 2006 Sep 7;242(1):237-56. doi: 10.1016/j.jtbi.2006.02.015. Epub 2006 Apr 17.
6
A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation.
J Theor Biol. 2006 Sep 7;242(1):220-36. doi: 10.1016/j.jtbi.2006.02.016. Epub 2006 Apr 3.
8
Severe bacteremia results in a loss of hepatic bacterial clearance.
Am J Respir Crit Care Med. 2006 Mar 15;173(6):644-52. doi: 10.1164/rccm.200509-1470OC. Epub 2006 Jan 6.
9
Dynamics of intrapulmonary bacterial growth in a murine model of repeated microaspiration.
Am J Respir Cell Mol Biol. 2005 Nov;33(5):476-82. doi: 10.1165/rcmb.2005-0053OC. Epub 2005 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验