Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minhogrid.10328.38, Braga, Portugal.
Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
Microbiol Spectr. 2022 Feb 23;10(1):e0216821. doi: 10.1128/spectrum.02168-21. Epub 2022 Jan 12.
Staphylococcus epidermidis is a major nosocomial pathogen with a remarkable ability to persist on indwelling medical devices through biofilm formation. Nevertheless, it remains intriguing how this process is efficiently achieved under the host's harsh conditions, where the availability of nutrients, such as essential metals, is scarce. Following our previous identification of two iron-regulated loci putatively involved in iron transport, and , we assessed here their individual contribution to both bacterial physiology and interaction with host immune cells. Single deletions of the and loci led to marked changes in the cell iron content, which were partly detrimental for planktonic growth and strongly affected biofilm formation under iron-restricted conditions. Deletion of each of these two loci did not lead to major changes in S. epidermidis survival within human macrophages or in an human blood model of bloodstream infection. However, the lack of either or loci significantly impaired bacterial survival in a murine model of bacteremia. Collectively, this study establishes, for the first time, the pivotal role of the iron-regulated loci and in S. epidermidis biofilm formation and survival within the host, providing relevant information for the development of new targeted therapeutics against this pathogen. Staphylococcus epidermidis is one of the most important nosocomial pathogens and a major cause of central line-associated bloodstream infections. Once in the bloodstream, this bacterium must surpass severe iron restriction in order to survive and establish infection. Surprisingly, very little is known about the iron acquisition mechanisms in this species. This study represents the first report on the involvement of the S. epidermidis iron-regulated loci and in biofilm formation under host relevant conditions and, most importantly, in survival within the host. Ultimately, these findings highlight iron acquisition and these loci in particular, as potential targets for future therapeutic strategies against biofilm-associated S. epidermidis infections.
表皮葡萄球菌是一种重要的医院获得性病原体,具有通过生物膜形成在留置医疗设备上持续存在的显著能力。然而,令人感兴趣的是,在宿主恶劣的条件下,这一过程是如何有效地实现的,在这种条件下,营养物质(如必需金属)的可用性是稀缺的。在我们先前鉴定了两个可能参与铁运输的铁调节基因座 和 之后,我们在这里评估了它们各自对细菌生理学和与宿主免疫细胞相互作用的贡献。 和 基因座的单个缺失导致细胞铁含量发生明显变化,这部分对浮游生长有害,并强烈影响铁限制条件下的生物膜形成。这些两个基因座中的每一个的缺失都不会导致表皮葡萄球菌在人巨噬细胞内或在 人血液血流感染模型中生存的主要变化。然而, 或 基因座的缺失显著削弱了细菌在鼠菌血症模型中的生存能力。总的来说,这项研究首次确立了铁调节基因座 和 在表皮葡萄球菌生物膜形成和宿主内生存中的关键作用,为针对这种病原体的新靶向治疗方法的开发提供了相关信息。表皮葡萄球菌是最重要的医院获得性病原体之一,也是中心静脉相关血流感染的主要原因。一旦进入血液,这种细菌必须克服严重的铁限制才能存活并引起感染。令人惊讶的是,我们对这种物种的铁获取机制知之甚少。这项研究代表了第一个关于表皮葡萄球菌铁调节基因座 和 在宿主相关条件下,特别是在宿主内生存中参与生物膜形成的报告。最终,这些发现强调了铁获取以及特别是这些基因座作为针对生物膜相关表皮葡萄球菌感染的未来治疗策略的潜在靶点。