Sukkar Adlah, Jenkins John, Sánchez Jesús, Wagner Elizabeth M
Johns Hopkins Asthma and Allergy Center, Division of Pulmonary and Critical Care Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
J Appl Physiol (1985). 2008 May;104(5):1470-5. doi: 10.1152/japplphysiol.00974.2007. Epub 2008 Mar 6.
Under conditions of chronic pulmonary ischemia, the bronchial circulation undergoes massive proliferation. However, little is known regarding the mechanisms that promote neovascularization. An expanding body of literature implicates the glutamic acid-leucine-arginine (ELR+) CXC chemokines and their G protein-coupled receptor, CXCR(2), as key proangiogenic components in the lung. We used a rat model of chronic pulmonary ischemia induced by left pulmonary artery ligation (LPAL) to study bronchial angiogenesis. Using a methacrylate mixture, we cast the systemic vasculature of the rat lung at weekly intervals after LPAL. Twenty-one days after LPAL, numerous large, tortuous bronchial arteries were observed surrounding the left main bronchus that penetrated the left lung parenchyma. In stark contrast, the right lung was essentially devoid of vessels. We quantified bronchial neovascularization using 15-microm radiolabeled microspheres to measure systemic blood flow to the left lung (n = 12 rats). Results showed that by 21 days after LPAL, bronchial blood flow to the ischemic left lung had increased >10-fold compared with controls 2 days after LPAL (P < 0.01). Focusing on the predominant rat CXC chemokine that signals through CXCR(2), we measured increased levels of cytokine-induced neutrophil chemoattractant-3 protein expression in left lung homogenates early (4 and 24 h; n = 10 rats) after LPAL relative to paired right lung controls (P < 0.01). Treatment with a neutralizing antibody to CXCR(2) resulted in a significant decrease in neovascularization 21 days after LPAL (n = 9 rats; P < 0.01). Our results confirm the time course of bronchial angiogenesis in the rat and suggest the importance of CXC chemokines in promoting systemic neovascularization in the lung.
在慢性肺缺血的情况下,支气管循环会发生大量增殖。然而,关于促进新血管形成的机制却知之甚少。越来越多的文献表明,谷氨酸 - 亮氨酸 - 精氨酸(ELR +)CXC趋化因子及其G蛋白偶联受体CXCR(2)是肺中关键的促血管生成成分。我们使用左肺动脉结扎(LPAL)诱导的大鼠慢性肺缺血模型来研究支气管血管生成。在LPAL后,我们每隔一周用甲基丙烯酸酯混合物灌注大鼠肺的全身血管系统。LPAL后21天,观察到左主支气管周围有许多粗大、迂曲的支气管动脉,它们穿透左肺实质。与之形成鲜明对比的是,右肺基本没有血管。我们使用15微米放射性标记微球来量化支气管新血管形成,以测量左肺的全身血流量(n = 12只大鼠)。结果显示,与LPAL后2天的对照组相比,LPAL后21天,缺血左肺的支气管血流量增加了10倍以上(P < 0.01)。聚焦于通过CXCR(2)发出信号的主要大鼠CXC趋化因子,我们测量到LPAL后早期(4小时和24小时;n = 10只大鼠)左肺匀浆中细胞因子诱导的中性粒细胞趋化因子 - 3蛋白表达水平相对于配对的右肺对照组有所增加(P < 0.01)。用抗CXCR(2)中和抗体治疗导致LPAL后21天新血管形成显著减少(n = 9只大鼠;P < 0.01)。我们的结果证实了大鼠支气管血管生成的时间进程,并表明CXC趋化因子在促进肺中全身新血管形成中的重要性。